13 research outputs found

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Detecting Neutrinos from Supernova Bursts in PandaX-4T

    Full text link
    Neutrinos from core-collapse supernovae are essential for the understanding of neutrino physics and stellar evolution. The dual-phase xenon dark matter detectors can provide a way to track explosions of galactic supernovae by detecting neutrinos through coherent elastic neutrino-nucleus scatterings. In this study, a variation of progenitor masses as well as explosion models are assumed to predict the neutrino fluxes and spectra, which result in the number of expected neutrino events ranging from 6.6 to 13.7 at a distance of 10 kpc over a 10-second duration with negligible backgrounds at PandaX-4T. Two specialized triggering alarms for monitoring supernova burst neutrinos are built. The efficiency of detecting supernova explosions at various distances in the Milky Way is estimated. These alarms will be implemented in the real-time supernova monitoring system at PandaX-4T in the near future, providing the astronomical communities with supernova early warnings.Comment: 9 pages,6 figure

    Potential impact of sub-structure on the determination of neutrino mass hierarchy at medium-baseline reactor neutrino oscillation experiments

    Full text link
    In the past decade, the precise measurement of the lastly known neutrino mixing angle θ13\theta _{13} has enabled the resolution of neutrino mass hierarch (MH) at medium-baseline reactor neutrino oscillation (MBRO) experiments. Recent calculations of the reactor neutrino flux predict percent-level sub-structures in the νˉe\bar{\nu }_e spectrum due to Coulomb effects in beta decay. Such fine structure in the reactor spectrum has been an issue of concern for efforts to determine the neutrino MH for the MBRO approach, the concern being that the sub-dominant oscillation pattern used to discriminate different hierarchies will be obscured by fine structure. The energy resolutions of current reactor experiments are not sufficient to measure such fine structure, and therefore the size and location in energy of these predicted discontinuities has not been confirmed experimentally. There has been speculation that a near detector is required with sufficient energy resolution to resolve the fine structure. This article studies the impact of fine structure on the resolution of MH, based on predicted reactor neutrino spectra, using the measured spectrum from Daya Bay as a reference. We also investigate how a near detector could improve the sensitivity of neutrino MH resolution based on various assumptions of near detector energy resolution

    Measurement of Double Beta Decay Half-life of 136^{136}Xe with the PandaX-4T Detector

    Full text link
    Precise measurement of two-neutrino double beta decay~(DBD) half-life is an important step for the searches of Majorana neutrinos with neutrinoless double-beta decay. We report the measurement of DBD half-life of 136^{136}Xe using the PandaX-4T dual-phase Time Projection Chamber~(TPC) with 3.7-tonne natural xenon and the first 94.9-day physics data release. The background model in the fiducial volume is well constrained in situ by events in the outer active region. With a 136^{136}Xe exposure of 15.5\,kg-year, we establish the half-life as 2.27±0.03(stat.)±0.09(syst.)×10212.27 \pm 0.03 (\textrm{stat.})\pm 0.09 (\textrm{syst.})\times 10^{21} year. This is the first DBD half-life measurement with natural xenon and demonstrates the physics capability of a large-scale liquid xenon TPC in the field of rare event searches.Comment: 6 pages, 4 figure

    Determination of Double Beta Decay Half-Life of 136Xe with the PandaX-4T Natural Xenon Detector

    Full text link
    Precise measurement of two-neutrino double beta decay (DBD) half-life is an important step for the searches of Majorana neutrinos with neutrinoless double beta decay. We report the measurement of DBD half-life of 136Xe using the PandaX-4T dual-phase Time Projection Chamber (TPC) with 3.7-tonne natural xenon and the first 94.9-day physics data release. The background model in the fiducial volume is well constrained in situ by events in the outer active region. With a 136Xe exposure of 15.5 kg-year, we establish the half-life as 2.27±0.03stat.±0.10syst.×1021 years. This is the first DBD half-life measurement with natural xenon and demonstrates the physics capability of a large-scale liquid xenon TPC in the field of rare event searches
    corecore