1,502 research outputs found

    The NLO contributions to the scalar pion form factors and the O(αs2){\cal O}(\alpha_s^2) annihilation corrections to the BππB\to \pi\pi decays

    Get PDF
    In this paper, by employing the kTk_{T} factorization theorem, we made the first calculation for the space-like scalar pion form factor Q2F(Q2)Q^2 F(Q^2) at the leading order (LO) and the next-to-leading order (NLO) level, and then found the time-like scalar pion form factor Fa,I(1)F'^{(1)}_{\rm a,I} by analytic continuation from the space-like one. From the analytical evaluations and the numerical results, we found the following points: (a) the NLO correction to the space-like scalar pion form factor has an opposite sign with the LO one but is very small in magnitude, can produce at most 10%10\% decrease to LO result in the considered Q2Q^2 region; (b) the NLO time-like scalar pion form factor Fa,I(1)F'^{(1)}_{\rm a,I} describes the O(αs2){\cal O}(\alpha_s^2) contribution to the factorizable annihilation diagrams of the considered BππB \to \pi\pi decays, i.e. the NLO annihilation correction; (c) the NLO part of the form factor Fa,I(1)F'^{(1)}_{\rm a,I} is very small in size, and is almost independent with the variation of cutoff scale μ0\mu_0, but this form factor has a large strong phase around 55-55^\circ and may play an important role in producing large CP violation for BππB\to \pi\pi decays; and (d) for B0π+πB^0 \to \pi^+\pi^- and π0π0 \pi^0\pi^0 decays, the newly known NLO annihilation correction can produce only a very small enhancement to their branching ratios, less than 3%3\% in magnitude, and therefore we could not interpret the well-known ππ\pi\pi-puzzle by the inclusion of this NLO correction to the factorizable annihilation diagrams.Comment: 26 pages, 12 figures, 1 Table; Minor correction

    Five-dimensional generalized f(R)f(R) gravity with curvature-matter coupling

    Get PDF
    The generalized f(R)f(R) gravity with curvature-matter coupling in five-dimensional (5D) spacetime can be established by assuming a hypersurface-orthogonal spacelike Killing vector field of 5D spacetime, and it can be reduced to the 4D formulism of FRW universe. This theory is quite general and can give the corresponding results to the Einstein gravity, f(R)f(R) gravity with both no-coupling and non-minimal coupling in 5D spacetime as special cases, that is, we would give the some new results besides previous ones given by Ref.\cite{60}. Furthermore, in order to get some insight into the effects of this theory on the 4D spacetime, by considering a specific type of models with f1(R)=f2(R)=αRmf_{1}(R)=f_{2}(R)=\alpha R^{m} and B(Lm)=Lm=ρB(L_{m})=L_{m}=-\rho, we not only discuss the constraints on the model parameters mm, nn, but also illustrate the evolutionary trajectories of the scale factor a(t)a(t), the deceleration parameter q(t)q(t) and the scalar field ϵ(t)\epsilon(t), ϕ(t)\phi(t) in the reduced 4D spacetime. The research results show that this type of f(R)f(R) gravity models given by us could explain the current accelerated expansion of our universe without introducing dark energy.Comment: arXiv admin note: text overlap with arXiv:0912.4581, arXiv:gr-qc/0411066 by other author

    NG2 cells response to axonal alteration in the spinal cord white matter in mice with genetic disruption of neurofilament light subunit expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chondroitin sulphate proteoglycan (NG2) expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4<sup>th </sup>commonest cell population of non-neuronal cell type in the central nervous system (CNS). They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neuropathogenesis and aimed to determine if NG2 cells could sense and response to the alterations in the axonal contents caused by disruption of neurofilament light subunit (NFL) expression.</p> <p>Results</p> <p>In the early neuropathological development stage, our study showed that the diameter of axons of upper motor neurons of NFL-/- mice decreased significantly while the thickness of their myelin sheath increased remarkably. Although there was an obvious morphological distortion in axons with occasionally partial demyelination, no obvious changes in expression of myelin proteins was detected. Parallel to these changes in the axons and their myelination, the processes of NG2 cells were disconnected from the nodes of Ranvier and extended further, suggesting that these cells in the spinal cord white matter could sense the alteration in axonal contents caused by disruption of NFL expression before astrocytic and microglial activation.</p> <p>Conclusion</p> <p>The structural configuration determined by the NFL gene may be important for maintenance of normal morphology of myelinated axons. The NG2 cells might serve as an early sensor for the delivery of information from impaired neurons to the local environment.</p

    Lifshitz effects on holographic pp-wave superfluid

    Get PDF
    In the probe limit, we numerically build a holographic pp-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent zz contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain the Cave of Winds appeared only in the five-dimensional anti-de Sitter~(AdS) spacetime, and the increasing zz hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg-Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime.Comment: 14 pages,5 figures, and 1 table, accepted by Phys. Lett.

    Testing Lorentz symmetry with space-based gravitational-wave detectors

    Full text link
    Lorentz symmetry (LS), one of the most fundamental physical symmetries, has been extensively studied in the context of quantum gravity and unification theories. Many of these theories predict a LS violation, which could arise from the discreteness of spacetime, or extra dimensions. Standard-model extension (SME) is an effective field theory to describe Lorentz violation whose effects can be explored using precision instruments such as atomic clocks and gravitational-wave (GW) detectors. Considering the pure-gravity sector and matter-gravity coupling sector in the SME, we studied the leading Lorentz-violating modifications to the time delay of light and the relativistic frequency shift of the clock in the space-based GW detectors. We found that the six data streams from the GW mission can construct various combinations of measurement signals, such as single-arm round-trip path, interference path, triangular round-trip path, etc. These measurements are sensitive to the different combinations of SME coefficients and provide novel linear combinations of SME coefficients different from previous studies. Based on the orbits of TianQin, LISA, and Taiji missions, we calculated the response of Lorentz-violating effects on the combinations of the measurement signal data streams. Our results allow us to estimate the sensitivities for SME coefficients: 10610^{-6} for the gravity sector coefficient sˉTT\bar{s}^{TT}, 10610^{-6} for matter-gravity coupling coefficients (aˉeff(e+p))T(\bar{a}^{(e+p)}_{\text{eff}})_{T} and cˉTT(e+p)\bar{c}^{(e+p)}_{TT}, and 10510^{-5} for (aˉeffn)T(\bar{a}^{n}_{\text{eff}})_{T} and cˉTTn\bar{c}^{n}_{TT}.Comment: 17 pages, 10 figure
    corecore