279 research outputs found
The impact of bank and non-bank financial institutions on local economic growth in China.
Impact; Growth;
Global-Scale Resource Survey and Performance Monitoring of Public OGC Web Map Services
One of the most widely-implemented service standards provided by the Open
Geospatial Consortium (OGC) to the user community is the Web Map Service (WMS).
WMS is widely employed globally, but there is limited knowledge of the global
distribution, adoption status or the service quality of these online WMS
resources. To fill this void, we investigated global WMSs resources and
performed distributed performance monitoring of these services. This paper
explicates a distributed monitoring framework that was used to monitor 46,296
WMSs continuously for over one year and a crawling method to discover these
WMSs. We analyzed server locations, provider types, themes, the spatiotemporal
coverage of map layers and the service versions for 41,703 valid WMSs.
Furthermore, we appraised the stability and performance of basic operations for
1210 selected WMSs (i.e., GetCapabilities and GetMap). We discuss the major
reasons for request errors and performance issues, as well as the relationship
between service response times and the spatiotemporal distribution of client
monitoring sites. This paper will help service providers, end users and
developers of standards to grasp the status of global WMS resources, as well as
to understand the adoption status of OGC standards. The conclusions drawn in
this paper can benefit geospatial resource discovery, service performance
evaluation and guide service performance improvements.Comment: 24 pages; 15 figure
Remote Sensing Image Scene Classification: Benchmark and State of the Art
Remote sensing image scene classification plays an important role in a wide
range of applications and hence has been receiving remarkable attention. During
the past years, significant efforts have been made to develop various datasets
or present a variety of approaches for scene classification from remote sensing
images. However, a systematic review of the literature concerning datasets and
methods for scene classification is still lacking. In addition, almost all
existing datasets have a number of limitations, including the small scale of
scene classes and the image numbers, the lack of image variations and
diversity, and the saturation of accuracy. These limitations severely limit the
development of new approaches especially deep learning-based methods. This
paper first provides a comprehensive review of the recent progress. Then, we
propose a large-scale dataset, termed "NWPU-RESISC45", which is a publicly
available benchmark for REmote Sensing Image Scene Classification (RESISC),
created by Northwestern Polytechnical University (NWPU). This dataset contains
31,500 images, covering 45 scene classes with 700 images in each class. The
proposed NWPU-RESISC45 (i) is large-scale on the scene classes and the total
image number, (ii) holds big variations in translation, spatial resolution,
viewpoint, object pose, illumination, background, and occlusion, and (iii) has
high within-class diversity and between-class similarity. The creation of this
dataset will enable the community to develop and evaluate various data-driven
algorithms. Finally, several representative methods are evaluated using the
proposed dataset and the results are reported as a useful baseline for future
research.Comment: This manuscript is the accepted version for Proceedings of the IEE
Truck Traffic and Load Spectra of Indiana Roadways for the Mechanistic-Empirical Pavement Design Guide
The Mechanistic-Empirical Pavement Design Guide (MEPDG) has been employed for pavement design by the Indiana Department of Transportation (INDOT) since 2009 and has generated efficient pavement designs with a lower cost. It has been demonstrated that the success of MEPDG implementation depends largely on a high level of accuracy associated with the information supplied as design inputs. Vehicular traffic loading is one of the key factors that may cause not only pavement structural failures, such as fatigue cracking and rutting, but also functional surface distresses, including friction and smoothness. In particular, truck load spectra play a critical role in all aspects of the pavement structure design. Inaccurate traffic information will yield an incorrect estimate of pavement thickness, which can either make the pavement fail prematurely in the case of under-designed thickness or increase construction cost in the case of over-designed thickness. The primary objective of this study was to update the traffic design input module, and thus to improve the current INDOT pavement design procedures. Efforts were made to reclassify truck traffic categories to accurately account for the specific axle load spectra on two-lane roads with low truck traffic and interstate routes with very high truck traffic. The traffic input module was updated with the most recent data to better reflect the axle load spectra for pavement design. Vehicle platoons were analyzed to better understand the truck traffic characteristics. The unclassified vehicles by traffic recording devices were examined and analyzed to identify possible causes of the inaccurate data collection. Bus traffic in the Indiana urban areas was investigated to provide additional information for highway engineers with respect to city streets as well as highway sections passing through urban areas. New equivalent single axle load (ESAL) values were determined based on the updated traffic data. In addition, a truck traffic data repository and visualization model and a TABLEAU interactive visualization dashboard model were developed for easy access, view, storage, and analysis of MEPDG related traffic data
- …