297 research outputs found

    Concept and Construction of Group Signature with self-proof capacity for confirming and denying

    Full text link
    With privacy-preserving and traceability properties, group signature is a cryptosystem with central role in cryptography. And there are lots of application scenarios. A new extension concept of group signature is presented, namely group signature with self-proof capacity. For a legitimate group signature, the real signer can prove that the signature is indeed signed by him/her. While for the other members of the group, they can prove that the signature is not signed by him/her. The former can be used for claiming money reward from the police, while the latter can be used for proving one's innocent in a criminal investigation

    Better Quantum Seal Schemes based on Trapdoor Claw-Free Functions

    Full text link
    Seal in classical information is simply impossible. Since classical information can be easily copied any number of times. Based on quantum information, esp. quantum unclonable theorem, quantum seal maybe constructed perfectly. But it is shown that perfect quantum seal is impossible, and the success probability is bounded. In this paper, we show how to exceed the optimal bound by using the TCF (Trapdoor Claw Free) functions, which can be constructed based on LWE assumption. Hence it is post-quantum secure

    Multi-Context Attention for Human Pose Estimation

    Full text link
    In this paper, we propose to incorporate convolutional neural networks with a multi-context attention mechanism into an end-to-end framework for human pose estimation. We adopt stacked hourglass networks to generate attention maps from features at multiple resolutions with various semantics. The Conditional Random Field (CRF) is utilized to model the correlations among neighboring regions in the attention map. We further combine the holistic attention model, which focuses on the global consistency of the full human body, and the body part attention model, which focuses on the detailed description for different body parts. Hence our model has the ability to focus on different granularity from local salient regions to global semantic-consistent spaces. Additionally, we design novel Hourglass Residual Units (HRUs) to increase the receptive field of the network. These units are extensions of residual units with a side branch incorporating filters with larger receptive fields, hence features with various scales are learned and combined within the HRUs. The effectiveness of the proposed multi-context attention mechanism and the hourglass residual units is evaluated on two widely used human pose estimation benchmarks. Our approach outperforms all existing methods on both benchmarks over all the body parts.Comment: The first two authors contribute equally to this wor

    Residual Attention Network for Image Classification

    Full text link
    In this work, we propose "Residual Attention Network", a convolutional neural network using attention mechanism which can incorporate with state-of-art feed forward network architecture in an end-to-end training fashion. Our Residual Attention Network is built by stacking Attention Modules which generate attention-aware features. The attention-aware features from different modules change adaptively as layers going deeper. Inside each Attention Module, bottom-up top-down feedforward structure is used to unfold the feedforward and feedback attention process into a single feedforward process. Importantly, we propose attention residual learning to train very deep Residual Attention Networks which can be easily scaled up to hundreds of layers. Extensive analyses are conducted on CIFAR-10 and CIFAR-100 datasets to verify the effectiveness of every module mentioned above. Our Residual Attention Network achieves state-of-the-art object recognition performance on three benchmark datasets including CIFAR-10 (3.90% error), CIFAR-100 (20.45% error) and ImageNet (4.8% single model and single crop, top-5 error). Note that, our method achieves 0.6% top-1 accuracy improvement with 46% trunk depth and 69% forward FLOPs comparing to ResNet-200. The experiment also demonstrates that our network is robust against noisy labels.Comment: accepted to CVPR201

    Online decentralized tracking for nonlinear time-varying optimal power flow of coupled transmission-distribution grids

    Full text link
    The coordinated alternating current optimal power flow (ACOPF) for coupled transmission-distribution grids has become crucial to handle problems related to high penetration of renewable energy sources (RESs). However, obtaining all system details and solving ACOPF centrally is not feasible because of privacy concerns. Intermittent RESs and uncontrollable loads can swiftly change the operating condition of the power grid. Existing decentralized optimization methods can seldom track the optimal solutions of time-varying ACOPFs. Here, we propose an online decentralized optimization method to track the time-varying ACOPF of coupled transmission-distribution grids. First, the time-varying ACOPF problem is converted to a dynamic system based on Karush-Kuhn-Tucker conditions from the control perspective. Second, a prediction term denoted by the partial derivative with respect to time is developed to improve the tracking accuracy of the dynamic system. Third, a decentralized implementation for solving the dynamic system is designed based on only a few information exchanges with respect to boundary variables. Moreover, the proposed algorithm can be used to directly address nonlinear power flow equations without relying on convex relaxations or linearization techniques. Numerical test results reveal the effectiveness and fast-tracking performance of the proposed algorithm.Comment: 18 pages with 15 figure
    • …
    corecore