26 research outputs found
Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein
Accumulation of myeloid-derived suppressor cells (MDSCs) associated with inhibition of dendritic cell (DC) differentiation is one of the major immunological abnormalities in cancer and leads to suppression of antitumor immune responses. The molecular mechanism of this phenomenon remains unclear. We report here that STAT3-inducible up-regulation of the myeloid-related protein S100A9 enhances MDSC production in cancer. Mice lacking this protein mounted potent antitumor immune responses and rejected implanted tumors. This effect was reversed by administration of wild-type MDSCs from tumor-bearing mice to S100A9-null mice. Overexpression of S100A9 in cultured embryonic stem cells or transgenic mice inhibited the differentiation of DCs and macrophages and induced accumulation of MDSCs. This study demonstrates that tumor-induced up-regulation of S100A9 protein is critically important for accumulation of MDSCs and reveals a novel molecular mechanism of immunological abnormalities in cancer
CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation
Recruitment of monocytic myeloid-derived suppressor cells (MDSCs) and differentiation of tumor-associated macrophages (TAMs) are the major factors contributing to tumor progression and metastasis. We demonstrated that differentiation of TAMs in tumor site from monocytic precursors was controlled by downregulation of the activity of the transcription factor STAT3. Decreased STAT3 activity was caused by hypoxia and affected all myeloid cells but was not observed in tumor cells. Upregulation of CD45 tyrosine phosphatase activity in MDSCs exposed to hypoxia in tumor site was responsible for downregulation of STAT3. This effect was mediated by the disruption of CD45 protein dimerization regulated by sialic acid. Thus, STAT3 has a unique function in the tumor environment in controlling the differentiation of MDSC into TAM, and its regulatory pathway could be a potential target for therapy
Involvement of Notch-1 Signaling in Bone Marrow Stroma-mediated De Novo Drug Resistance of Myeloma and Other Malignant Lymphoid Cell Lines
The bone marrow (BM) microenvironment plays a critical role in malignant cell growth, patient survival, and response to chemotherapy in hematologic malignancies. However, mechanisms associated with this environmental influence remain unclear. In this study, we investigated the role of Notch family proteins in myeloma and other malignant lymphoid cell line growth and response to chemotherapeutic drugs. All 8 tested cell lines expressed Notch-3 and Notch-4; 7 cell lines expressed Notch-1; and 6 expressed Notch-2 proteins. Interaction with BM stroma (BMS) activated Notch signaling in tumor cells. However, activation of only Notch-1, but not Notch-2, resulted in protection of tumor cells from melphalan- and mitoxantrone-induced apoptosis. This protection was associated with up-regulation of p21WAF/Cip and growth inhibition of cells. Overexpression of Notch-1 in Notch-1- U266 myeloma cells up-regulated p21 and resulted in protection from drug-induced apoptosis. Thus, this is a first report demonstrating that Notch-1 signaling may be a primary mechanism mediating the BMS influence on hematologic malignant cell growth and survival. (Blood. 2004; 103:3503-3510