66 research outputs found

    Backdoor Attack against Object Detection with Clean Annotation

    Full text link
    Deep neural networks (DNNs) have shown unprecedented success in object detection tasks. However, it was also discovered that DNNs are vulnerable to multiple kinds of attacks, including Backdoor Attacks. Through the attack, the attacker manages to embed a hidden backdoor into the DNN such that the model behaves normally on benign data samples, but makes attacker-specified judgments given the occurrence of a predefined trigger. Although numerous backdoor attacks have been experimented on image classification, backdoor attacks on object detection tasks have not been properly investigated and explored. As object detection has been adopted as an important module in multiple security-sensitive applications such as autonomous driving, backdoor attacks on object detection could pose even more severe threats. Inspired by the inherent property of deep learning-based object detectors, we propose a simple yet effective backdoor attack method against object detection without modifying the ground truth annotations, specifically focusing on the object disappearance attack and object generation attack. Extensive experiments and ablation studies prove the effectiveness of our attack on two benchmark object detection datasets, PASCAL VOC07+12 and MSCOCO, on which we achieve an attack success rate of more than 92% with a poison rate of only 5%

    Towards Robust Neural Networks via Random Self-ensemble

    Full text link
    Recent studies have revealed the vulnerability of deep neural networks: A small adversarial perturbation that is imperceptible to human can easily make a well-trained deep neural network misclassify. This makes it unsafe to apply neural networks in security-critical applications. In this paper, we propose a new defense algorithm called Random Self-Ensemble (RSE) by combining two important concepts: {\bf randomness} and {\bf ensemble}. To protect a targeted model, RSE adds random noise layers to the neural network to prevent the strong gradient-based attacks, and ensembles the prediction over random noises to stabilize the performance. We show that our algorithm is equivalent to ensemble an infinite number of noisy models fϵf_\epsilon without any additional memory overhead, and the proposed training procedure based on noisy stochastic gradient descent can ensure the ensemble model has a good predictive capability. Our algorithm significantly outperforms previous defense techniques on real data sets. For instance, on CIFAR-10 with VGG network (which has 92\% accuracy without any attack), under the strong C\&W attack within a certain distortion tolerance, the accuracy of unprotected model drops to less than 10\%, the best previous defense technique has 48%48\% accuracy, while our method still has 86%86\% prediction accuracy under the same level of attack. Finally, our method is simple and easy to integrate into any neural network.Comment: ECCV 2018 camera read

    Towards Stable Backdoor Purification through Feature Shift Tuning

    Full text link
    It has been widely observed that deep neural networks (DNN) are vulnerable to backdoor attacks where attackers could manipulate the model behavior maliciously by tampering with a small set of training samples. Although a line of defense methods is proposed to mitigate this threat, they either require complicated modifications to the training process or heavily rely on the specific model architecture, which makes them hard to deploy into real-world applications. Therefore, in this paper, we instead start with fine-tuning, one of the most common and easy-to-deploy backdoor defenses, through comprehensive evaluations against diverse attack scenarios. Observations made through initial experiments show that in contrast to the promising defensive results on high poisoning rates, vanilla tuning methods completely fail at low poisoning rate scenarios. Our analysis shows that with the low poisoning rate, the entanglement between backdoor and clean features undermines the effect of tuning-based defenses. Therefore, it is necessary to disentangle the backdoor and clean features in order to improve backdoor purification. To address this, we introduce Feature Shift Tuning (FST), a method for tuning-based backdoor purification. Specifically, FST encourages feature shifts by actively deviating the classifier weights from the originally compromised weights. Extensive experiments demonstrate that our FST provides consistently stable performance under different attack settings. Without complex parameter adjustments, FST also achieves much lower tuning costs, only 10 epochs. Our codes are available at https://github.com/AISafety-HKUST/stable_backdoor_purification.Comment: NeurIPS 2023 paper. The first two authors contributed equall

    Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks

    Full text link
    In this work, besides improving prediction accuracy, we study whether personalization could bring robustness benefits to backdoor attacks. We conduct the first study of backdoor attacks in the pFL framework, testing 4 widely used backdoor attacks against 6 pFL methods on benchmark datasets FEMNIST and CIFAR-10, a total of 600 experiments. The study shows that pFL methods with partial model-sharing can significantly boost robustness against backdoor attacks. In contrast, pFL methods with full model-sharing do not show robustness. To analyze the reasons for varying robustness performances, we provide comprehensive ablation studies on different pFL methods. Based on our findings, we further propose a lightweight defense method, Simple-Tuning, which empirically improves defense performance against backdoor attacks. We believe that our work could provide both guidance for pFL application in terms of its robustness and offer valuable insights to design more robust FL methods in the future. We open-source our code to establish the first benchmark for black-box backdoor attacks in pFL: https://github.com/alibaba/FederatedScope/tree/backdoor-bench.Comment: KDD 202
    • …
    corecore