254 research outputs found

    Design monolayer iodinenes based on halogen bond and tiling theory

    Full text link
    Xenes, two-dimensional (2D) monolayers composed of a single element, with graphene as a typical representative, have attracted widespread attention. Most of the previous Xenes, X from group-IIIA to group-VIA elements have bonding characteristics of covalent bonds. In this work, we for the first time unveil the pivotal role of a halogen bond, which is a distinctive type of bonding with interaction strength between that of a covalent bond and a van der Waals interaction, in 2D group-VIIA monolayers. Combing the ingenious non-edge-to-edge tiling theory and state-of-art ab initio method with refined local density functional M06-L, we provide a precise and effective bottom-up construction of 2D iodine monolayer sheets, iodinenes, primarily governed by halogen bonds, and successfully design a category of stable iodinenes, encompassing herringbone, Pythagorean, gyrated truncated hexagonal, i.e. diatomic-kagome, and gyrated hexagonal tiling pattern. These iodinene structures exhibit a wealth of properties, such as flat bands, nontrivial topology, and fascinating optical characteristics, offering valuable insights and guidance for future experimental investigations. Our work not only unveils the unexplored halogen bonding mechanism in 2D materials but also opens a new avenue for designing other non-covalent bonding 2D materials.Comment: 6 pages, 4 figure

    Differential virus restriction patterns of rhesus macaque and human APOBEC3A: Implications for lentivirus evolution

    Get PDF
    AbstractThe human apolipoprotein B mRNA editing enzyme catalytic peptide-like 3 (APOBEC3; A3) family of proteins (A3A-H) are known to restrict various retroviruses and retroelements, but the full complement of rhesus macaque A3 proteins remains unclear. We report the isolation and characterization of the hA3A homologue from rhesus macaques (rhA3A) and show that the rhesus macaque and human A3 genes are orthologous. RhA3A is expressed at high levels in activated CD4+ T cells, is widely expressed in macaque tissues, and is degraded in the presence of the human immunodeficiency virus (HIV-1) and simian–human immunodeficiency virus (SHIV) genomes. Our results indicate that rhA3A is a potent inhibitor of SHIVΔvif and to a lesser extent HIV-1Δvif. Unlike hA3A, rhA3A did not inhibit adeno-associated virus 2 (AAV-2) replication and L1 retrotransposition. These data suggest an evolutionary switch in primate A3A virus specificity and provide the first evidence that a primate A3A can inhibit lentivirus replication

    The cosmic ray test of MRPCs for the BESIII ETOF upgrade

    Full text link
    In order to improve the particle identification capability of the Beijing Spectrometer III (BESIII),t is proposed to upgrade the current endcap time-of-flight (ETOF) detector with multi-gap resistive plate chamber (MRPC) technology. Aiming at extending ETOF overall time resolution better than 100ps, the whole system including MRPC detectors, new-designed Front End Electronics (FEE), CLOCK module, fast control boards and time to digital modules (TDIG), was built up and operated online 3 months under the cosmic ray. The main purposes of cosmic ray test are checking the detectors' construction quality, testing the joint operation of all instruments and guaranteeing the performance of the system. The results imply MRPC time resolution better than 100psps, efficiency is about 98%\% and the noise rate of strip is lower than 1Hz/Hz/(scm2scm^{2}) at normal threshold range, the details are discussed and analyzed specifically in this paper. The test indicates that the whole ETOF system would work well and satisfy the requirements of upgrade

    Neuropeptide Deficient Mice Have Attenuated Nociceptive, Vascular, and Inflammatory Changes in a Tibia Fracture Model of Complex Regional Pain Syndrome

    Get PDF
    BACKGROUND: Distal limb fracture in man can induce a complex regional pain syndrome (CRPS) with pain, warmth, edema, and cutaneous inflammation. In the present study substance P (SP, Tac1(−/−)) and CGRP receptor (RAMP1(−/−)) deficient mice were used to investigate the contribution of neuropeptide signaling to CRPS-like changes in a tibia fracture mouse model. Wildtype, Tac1(−/−), and RAMP1(−/−) mice underwent tibia fracture and casting for 3 weeks, then the cast was removed and hindpaw mechanical allodynia, unweighting, warmth, and edema were tested over time. Hindpaw skin was collected at 3 weeks post-fracture for immunoassay and femurs were collected for micro-CT analysis. RESULTS: Wildtype mice developed hindpaw allodynia, unweighting, warmth, and edema at 3 weeks post-fracture, but in the Tac1(−/−) fracture mice allodynia and unweighting were attenuated and there was no warmth and edema. RAMP1(−/−) fracture mice had a similar presentation, except there was no reduction in hindpaw edema. Hindpaw skin TNFα, IL-1β, IL-6 and NGF levels were up-regulated in wildtype fracture mice at 3 weeks post-fracture, but in the Tac1(−/−) and RAMP1(−/−) fracture mice only IL-6 was increased. The epidermal keratinocytes were the cellular source for these inflammatory mediators. An IL-6 receptor antagonist partially reversed post-fracture pain behaviors in wildtype mice. CONCLUSIONS: In conclusion, both SP and CGRP are critical neuropeptide mediators for the pain behaviors, vascular abnormalities, and up-regulated innate immune responses observed in the fracture hindlimb. We postulate that the residual pain behaviors observed in the Tac1(−/−) and RAMP1(−/−) fracture mice are attributable to the increased IL-6 levels observed in the hindpaw skin after fracture
    • …
    corecore