99 research outputs found

    Decrease of Klotho in the Kidney of Streptozotocin-Induced Diabetic Rats

    Get PDF
    The klotho gene is expressed in a limited number of tissues, most notably in distal convoluted tubules in the kidney and choroid plexus in the brain. A previous study suggested that Klotho increases resistance to oxidative stress. However, changes of Klotho expression in high glucose-induced oxidative stress remain unclear. In the present study, we used streptozotocin-induced diabetic rats (STZ rats) to examine the effects of insulin, phloridzin or antioxidant, tiron on diabetic nephropathy. Both insulin and phloridzin reversed the lower Klotho expression levels in kidneys of STZ rats by the correction of hyperglycemia. Also, renal functions were improved by these treatments. In addition to the improvement of renal functions, the decrease of Klotho expression in kidney of STZ rats was also reversed by tiron without changing blood glucose levels. The reduction of oxidative stress induced by high glucose can be considered for this action of tiron. This view was further confirmed in vitro using high glucose-exposed Madin-Darby canine kidney (MDCK) epithelial cells. Thus, we suggest that decrease of oxidative stress is not only responsible for the improvement of renal function but also for the recovery of Klotho expression in kidney of STZ rats

    Prostatic Relaxation Induced by Loperamide Is Reduced in Spontaneously Hypertensive Rats

    Get PDF
    This paper shows a new finding about the decrease of relaxative response to loperamide in prostate of spontaneously hypertensive rats (SHR) as compare to normal rats (WKY). Authors demonstrated the reduction of ATP-sensitive potassium channels is resposible for this change using immunoblotting analysis and the decrease of action induced by diazoxide. This view is not mentioned before and is the first one reporting this result

    Mediation of β-Endorphin by Isoferulic Acid to Lower Plasma Glucose in Streptozotocin-Induced Diabetic Rats

    Full text link

    Role of Bone Morphogenetic Proteins-7 (BMP-7) in the Renal Improvement Effect of DangGui (Angelica sinensis) in Type-1 Diabetic Rats

    Get PDF
    Hyperglycemia induced reactive oxygen species (ROS) generation is believed as major factors leading to diabetic nephropathy (DN). DangGui (Angelica sinensis) is mentioned to show renal protective effect in combination with other herbs. Bone morphogenetic proteins-7 (BMP-7) is produced merit in protection of DN. The role of BMP-7 in DangGui-induced renal improvement is not clear. The present study investigated the effects of DangGui on renal functions, BMP-7 expression and the levels of ROS in streptozotocin (STZ)-induced diabetic rats and high glucose-exposed rat mesangial cells (RMCs). After 1- or 4-week treatment, DangGui improved renal functions and increased renal BMP-7 expression in diabetic rats. The BMP-7 expression in RMCs was reduced by high glucose treatment and this could be reversed by DangGui. Moreover, RMCs exposed to high glucose were expired by BMP-7 RNAi transfection but those cells remained alive by scramble transfection. Thus, we employed regular RMCs to knock down BMP-7 with RNAi and we found that DangGui increased BMP-7 expression in these RMCs. Direct activation of BMP-7 expression by DangGui could be considered. The results of DPPH assay, DHE stain and lucigenin assay indicated that DangGui could inhibit high glucose-induced ROS in RMCs. These results suggest that DangGui has an ability to improve renal functions in STZ-diabetic rats through increasing endogenous BMP-7 expression and decreasing oxidative stress in kidney. The present study suggest that DangGui could be applied to improve renal functions in diabetic disorders

    Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic cardiomyopathy, a diabetes-specific complication, refers to a disorder that eventually leads to left ventricular hypertrophy in addition to diastolic and systolic dysfunction. In recent studies, hyperglycemia-induced reactive oxygen species (ROS) in cardiomyocytes have been linked to diabetic cardiomyopathy. GATA binding protein 4 (GATA-4) regulates the expression of many cardio-structural genes including cardiac troponin-I (cTnI).</p> <p>Methods</p> <p>Streptozotocin-induced diabetic rats and H9c2 embryonic rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on GATA-4 accumulation in the nucleus. cTnI expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of cTnI and GATA-4 by Western blot analysis.</p> <p>Results</p> <p>Cardiac output was lowered in STZ-induced diabetic rats. In addition, higher expressions of cardiac troponin I (cTnI) and phosphorylated GATA-4 were identified in these rats by Western blotting. The changes were reversed by treatment with insulin or phlorizin after correction of the blood sugar level. In H9c2 cells, ROS production owing to the high glucose concentration increased the expression of cTnI and GATA-4 phosphorylation. However, hyperglycemia failed to increase the expression of cTnI when GATA-4 was silenced by small interfering RNA (siRNA) in H9c2 cells. Otherwise, activation of ERK is known to be a signal for phosphorylation of serine105 in GATA-4 to increase the DNA binding ability of this transcription factor. Moreover, GSK3β could directly interact with GATA-4 to cause GATA-4 to be exported from the nucleus. GATA-4 nuclear translocation and GSK3β ser9 phosphorylation were both elevated by a high glucose concentration in H9c2 cells. These changes were reversed by tiron (ROS scavenger), PD98059 (MEK/ERK inhibitor), or siRNA of GATA-4. Cell contractility measurement also indicated that the high glucose concentration decreased the contractility of H9c2 cells, and this was reduced by siRNA of GATA-4.</p> <p>Conclusions</p> <p>Hyperglycemia can cause systolic dysfunction and a higher expression of cTnI in cardiomyocytes through ROS, enhancing MEK/ERK-induced GATA-4 phosphorylation and accumulation in the cell nucleus.</p

    Activation of β-Adrenoceptors by Dobutamine May Induce a Higher Expression of Peroxisome Proliferator-Activated Receptors δ (PPARδ) in Neonatal Rat Cardiomyocytes

    Get PDF
    Recent evidence showed the role of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Cardiac contraction induced by various agents is critical in restoring the activity of peroxisome proliferator-activated receptors δ (PPARδ) in cardiac myopathy. Because dobutamine is an agent widely used to treat heart failure in emergency setting, this study is aimed to investigate the change of PPARδ in response to dobutamine. Neonatal rat cardiomyocytes were used to examine the effects of dobutamine on PPARδ expression levels and cardiac troponin I (cTnI) phosphorylation via Western blotting analysis. We show that treatment with dobutamine increased PPARδ expression and cTnI phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. These increases were blocked by the antagonist of β1-adrenoceptors. Also, the action of dobutamine was related to the increase of calcium ions and diminished by chelating intracellular calcium. Additionally, dobutamine-induced action was reduced by the inhibition of downstream messengers involved in this calcium-related pathway. Moreover, deletion of PPARδ using siRNA generated the reduction of cTnI phosphorylation in cardiomyocytes treated with dobutamine. Thus, we concluded that PPARδ is increased by dobutamine in cardiac cells

    Increase of ATP-sensitive potassium (KATP) channels in the heart of type-1 diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An impairment of cardiovascular function in streptozotocin (STZ)-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (K<sub>ATP</sub>) channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac K<sub>ATP </sub>channels in diabetic disorders.</p> <p>Methods</p> <p>Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on cardiac function and the expression of K<sub>ATP </sub>channels. K<sub>ATP </sub>channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of K<sub>ATP </sub>channels by Western blot and Northern blot analysis.</p> <p>Results</p> <p>The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of K<sub>ATP </sub>channel. Two subunits of cardiac K<sub>ATP </sub>channel (SUR2A and kir 6.2) were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac K<sub>ATP </sub>in these diabetic rats.</p> <p>Conclusions</p> <p>Both mRNA and protein expression of cardiac K<sub>ATP </sub>channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some K<sub>ATP </sub>channel drugs.</p

    Mediation of Endogenous β-endorphin by Tetrandrine to Lower Plasma Glucose in Streptozotocin-induced Diabetic Rats

    Get PDF
    The role of β-endorphin in the plasma glucose-lowering action of tetrandrine in streptozotocin-induced diabetic rats (STZ-diabetic rats) was investigated. The plasma glucose concentration was assessed by the glucose oxidase method. The enzyme-linked immunosorbent assay was used to determine the plasma level of β-endorphin-like immunoreactivity (BER). The mRNA levels of glucose transporter subtype 4 (GLUT4) in soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK) in the liver of STZ-diabetic rats were detected by Northern blotting analysis. The expressed protein of GLUT4 or PEPCK was characterized by Western blotting analysis. Tetrandrine dose-dependently increased plasma BER in a manner parallel to the decrease of plasma glucose in STZ-diabetic rats. Moreover, the plasma glucose-lowering effect of tetrandrine was inhibited by naloxone and naloxonazine at doses sufficient to block opioid μ-receptors. Further, tetrandrine failed to produce plasma glucose-lowering action in opioid μ-receptor knockout diabetic mice. Bilateral adrenalectomy eliminated the plasma glucose-lowering effect and plasma BER-elevating effect of tetrandrine in STZ-diabetic rats. Both effects were abolished by treatment with hexamethonium or pentolinium at doses sufficient to block nicotinic receptors. Tetrandrine enhanced BER release directly from the isolated adrenal medulla of STZ-diabetic rats and this action was abolished by the blockade of nicotinic receptors. Repeated intravenous administration of tetrandrine (1.0 mg/kg) to STZ-diabetic rats for 3 days resulted in an increase in the mRNA and protein levels of the GLUT4 in soleus muscle, in addition to the lowering of plasma glucose. Similar treatment with tetrandrine reversed the elevated mRNA and protein levels of PEPCK in the liver of STZ-diabetic rats. The obtained results suggest that tetrandrine may induce the activation of nicotinic receptors in adrenal medulla to enhance the secretion of β-endorphin, which could stimulate opioid μ-receptors to increase glucose utilization or/and reduce hepatic gluconeogenesis to lower plasma glucose levels in STZ-diabetic rats

    Acute effect of electroacupuncture at the Zusanli acupoints on decreasing insulin resistance as shown by lowering plasma free fatty acid levels in steroid-background male rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin sensitivity has been enhanced by electroacupuncture (EA) in rats, but the EA phenomenon in an insulin resistant state is still unclear. This study reports the use of a large dose of prednisolone to evaluate the effects of EA in a state of insulin resistance.</p> <p>Methods</p> <p>The plasma levels of free fatty acids (FFAs) were estimated in steroid-background rats (SBRs) and compared with those in healthy rats treated with normal saline. In addition, plasma glucose and endogenous insulin levels were assayed to calculate the homeostasis model assessment (HOMA) index. Intravenous glucose tolerance test (IVGTT) was carried out to compare glucose tolerance. The SBRs were randomly divided into EA-treatment and non-EA treatment groups and 15-Hz EA was applied to the bilateral Zusanli acupoints to investigate its effects on insulin resistance. In addition to an insulin challenge test (ICT) and IVGTT, the plasma levels of FFAs were measured and western blot was performed to help determine the effects of EA on the insulin resistant state.</p> <p>Results</p> <p>The plasma levels of FFAs increased markedly in SBRs, the HOMA index was markedly higher, and glucose tolerance was impaired. EA improved glucose tolerance and insulin sensitivity by decreasing the plasma levels of FFAs. Further, the insulin signaling proteins (IRS1) and glucose transporter isoform protein (GLUT4) in skeletal muscle inhibited by prednisolone recovered after EA.</p> <p>Conclusion</p> <p>Insulin resistance was successfully induced by a large dose of prednisolone in male rats. This insulin resistance can be improved by 15 Hz EA at the bilateral Zusanli acupoints, as shown by decreased plasma levels of FFAs.</p

    Renal Protective Effect of Xiao-Chai-Hu-Tang on Diabetic Nephropathy of Type 1-Diabetic Mice

    Get PDF
    Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese medicine formula consisting of seven medicinal plants, is used in the treatment of various diseases. We show here that XCHT could protect type-1 diabetic mice against diabetic nephropathy, using streptozotocin (STZ)-induced diabetic mice and high-glucose (HG)-exposed rat mesangial cell (RMC) as models. Following 4 weeks of oral administration with XCHT, renal functions and renal hypertrophy significantly improved in the STZ-diabetic mice, while serum glucose was only moderately reduced compared to vehicle treatment. Treatment with XCHT in the STZ-diabetic mice and HG-exposed RMC resulted in a decrease in expression levels of TGF-β1, fibronectin, and collagen IV, with concomitant increase in BMP-7 expression. Data from DPPH assay, DHE stain, and CM-H2DCFDA analysis indicated that XCHT could scavenge free radicals and inhibit high-glucose-induced ROS in RMCs. Taken together, these results suggest that treatment with XCHT can improve renal functions in STZ-diabetic mice, an effect that is potentially mediated through decreasing oxidative stress and production of TGF-β1, fibronectin, and collagen IV in the kidney during development of diabetic nephropathy. XCHT, therefore merits further investigation for application to improve renal functions in diabetic disorders
    corecore