30 research outputs found

    A Secure and Efficient Multi-Object Grasping Detection Approach for Robotic Arms

    Full text link
    Robotic arms are widely used in automatic industries. However, with wide applications of deep learning in robotic arms, there are new challenges such as the allocation of grasping computing power and the growing demand for security. In this work, we propose a robotic arm grasping approach based on deep learning and edge-cloud collaboration. This approach realizes the arbitrary grasp planning of the robot arm and considers the grasp efficiency and information security. In addition, the encoder and decoder trained by GAN enable the images to be encrypted while compressing, which ensures the security of privacy. The model achieves 92% accuracy on the OCID dataset, the image compression ratio reaches 0.03%, and the structural difference value is higher than 0.91

    Revisiting Initializing Then Refining: An Incomplete and Missing Graph Imputation Network

    Full text link
    With the development of various applications, such as social networks and knowledge graphs, graph data has been ubiquitous in the real world. Unfortunately, graphs usually suffer from being absent due to privacy-protecting policies or copyright restrictions during data collection. The absence of graph data can be roughly categorized into attribute-incomplete and attribute-missing circumstances. Specifically, attribute-incomplete indicates that a part of the attribute vectors of all nodes are incomplete, while attribute-missing indicates that the whole attribute vectors of partial nodes are missing. Although many efforts have been devoted, none of them is custom-designed for a common situation where both types of graph data absence exist simultaneously. To fill this gap, we develop a novel network termed Revisiting Initializing Then Refining (RITR), where we complete both attribute-incomplete and attribute-missing samples under the guidance of a novel initializing-then-refining imputation criterion. Specifically, to complete attribute-incomplete samples, we first initialize the incomplete attributes using Gaussian noise before network learning, and then introduce a structure-attribute consistency constraint to refine incomplete values by approximating a structure-attribute correlation matrix to a high-order structural matrix. To complete attribute-missing samples, we first adopt structure embeddings of attribute-missing samples as the embedding initialization, and then refine these initial values by adaptively aggregating the reliable information of attribute-incomplete samples according to a dynamic affinity structure. To the best of our knowledge, this newly designed method is the first unsupervised framework dedicated to handling hybrid-absent graphs. Extensive experiments on four datasets have verified that our methods consistently outperform existing state-of-the-art competitors

    Malware Detection Based on the Feature Selection of a Correlation Information Decision Matrix

    No full text
    Smartphone apps are closely integrated with our daily lives, and mobile malware has brought about serious security issues. However, the features used in existing traffic-based malware detection techniques have a large amount of redundancy and useless information, wasting the computational resources of training detection models. To overcome this drawback, we propose a feature selection method; the core of the method involves choosing selected features based on high irrelevance, thereby removing redundant features. Furthermore, artificial intelligence has implemented malware detection and achieved outstanding detection ability. However, almost all malware detection models in deep learning include pooling operations, which lead to the loss of some local information and affect the robustness of the model. We also propose designing a malware detection model for malicious traffic identification based on a capsule network. The main difference between the capsule network and the neural network is that the neuron outputs a scalar, while the capsule outputs a vector. It is more conducive to saving local information. To verify the effectiveness of our method, we verify it from three aspects. First, we use four popular machine learning algorithms to prove the effectiveness of the proposed feature selection method. Second, we compare the capsule network with the convolutional neural network to prove the superiority of the capsule network. Finally, we compare our proposed method with another state-of-the-art malware detection technique; our accuracy and recall increased by 9.71% and 20.18%, respectively

    A Review of Solving Non-IID Data in Federated Learning: Current Status and Future Directions

    No full text
    Federated learning (FL), as a machine learning framework, has garnered substantial attention from researchers in recent years. FL makes it possible to train a global model through coordination by a central server while ensuring the privacy of data on individual edge devices. However, the data on edge devices that participate in FL training are not independently and identically distributed (IID), resulting in challenges related to heterogeneity data. In this paper, we introduce the challenges generated by non-IID data to FL and provide a detailed classification of non-IID data. Then, we summarize the existing solutions to non-IID data in FL from the perspectives of data and process. To the best of our knowledge, despite the considerable efforts achieved by many researchers in solving the non-IID problem, some issues remain unsolved. This paper provides researchers with the latest findings and analyzes the potential future directions for solving non-IID in FL
    corecore