6 research outputs found

    Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China

    No full text
    We analyzed variations in the Sr/Ca, Ba/Ca, REE/Ca (REE: rare earth element), Zn/Ca, and Pb/Ca ratios preserved in an annually layered stalagmite, XL21, from central China. The stalagmite record spans the 95 year period AD 1914&ndash;2008. The Sr/Ca and Ba/Ca ratios have a significant positive correlation with the stalagmite&#39;s growth rate, suggesting that they were primarily controlled by growth-rate variations. Variations in REE/Ca ratios are consistent with local temperature changes, suggesting temperature influenced REE concentrations in the stalagmite over decadal to annual timescales. Higher temperature in this humid area can increase vegetation cover, microbial activity, and organic decomposition in the soil, resulting in enhanced pCO2, organic matter concentration and reduced pH, and consequently increased REE mobilization from the overlying soil layer and host rock. Higher temperatures may also increase the natural Zn mobilization from the overlying soil mediated by organic matter and consequently may have led to increased Zn retention in XL21. An increasing trend is seen in the Pb/Ca ratios from XL21 since 1985, which is consistent with increased lead production in this area, and indicates an increase in mine-derived lead pollution in the local environment over the past 30 years.</p

    Quantitative temperature reconstruction based on growth rate of annually-layered stalagmite: a case study from central China

    No full text
    We used the annual growth rate of a stalagmite (XL21) collected from Xianglong Cave, central China, to quantitatively reconstruct regional terrestrial temperature changes over the last 95 years (1912-2006 AD). Based on a significant positive correlation between the growth rate and the observed temperature, a transfer function was designed, and the temperature from the previous September to May (P-9-5) was reconstructed, with an explained variance of 43.5%. Our results show an increasing trend in temperature during the last century, and especially over the last 30 years. The temperature variability from central China recorded here bears a striking similarity to that in the Northern Hemisphere, and also to global trends. However, the cooling between the 1980s and the early 1990s seen in the stalagmite record, which interrupted the warming trend that began in the 1960s, is not observed in the mean conditions found in China, the Northern Hemisphere, neither globally. This methodology for reconstructing historical temperature from stalagmite growth rates overcomes the limitation of the short meteorological observation period and supports the potential of stalagmite lamina climatology.</p

    High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial

    No full text
    We present a summer precipitation reconstruction for the last glacial (LG) on the western edge of the Chinese Loess Plateau (CLP) using a well-dated organic carbon isotopic dataset together with an independent modern process study results. Our results demonstrate that summer precipitation variations in the CLP during the LG were broadly correlated to the intensity of the Asian summer monsoon (ASM) as recorded by stalagmite oxygen isotopes from southern China. During the last deglaciation, the onset of the increase in temperatures at high latitudes in the Northern Hemisphere and decline in the intensity of the East Asia winter monsoon in mid latitudes was earlier than the increase in ASM intensity and our reconstructed summer precipitation in the western CLP. Quantitative reconstruction of a single paleoclimatic factor provides new insights and opportunities for further understanding of the paleoclimatic variations in monsoonal East Asia and their relation to the global climatic system.</p

    Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave

    No full text
    We developed a composite oxygen isotopic record of cave calcite for the last 1860 years based on three stalagmites from the Huangye Cave in eastern Gansu Province, northern China. The delta(18)O values reflect monsoon precipitation changes, with lower d18O values representing higher precipitation and vice versa. Three intervals of high precipitation were identified at AD 138-450, AD 730-1200, and AD 1860-1960. Two intervals of low precipitation occurred at AD 1320-1410 and AD 1530-1860. The reconstructed monsoon precipitation variations correlate well with other records further east in the eastern Yellow River Basin, suggesting synchronous precipitation changes during the late Holocene in the semi-humid region of northern China on decadal to centennial scales. Peak periods of warfare in dynastic transition times, such as at AD 391-420, AD 601-630, AD 1111-1140, AD 1351-1380, and AD 1621-1650, correspond to sharp declines in precipitation or temperature in semi-humid northern China, indicating a strong connection between climatic and societal changes. Our study suggests that climatic deterioration in semi-humid northern China has played an important role in Chinese societal evolution.</p

    Cyclic precipitation variation on the western Loess Plateau of China during the past four centuries

    No full text
    Precipitation variation on the Loess Plateau (LP) of China is not only important for rain-fed agriculture in this environmentally sensitive region, but also critical for the water and life securities over the whole Yellow River basin. Here we reconstruct high resolution precipitation variation on the western LP during the past 370 years by using two replicated, annually-laminated stalagmites. Spatial analysis suggests that the reconstruction can be also representative for the whole LP region. The precipitation variations show a significant quasi-50 year periodicity during the last 370 years, and have an important role in determining the runoff of the middle Yellow River. The main factor controlling the decadal scale variations and long-term trend in precipitation over this region is southerly water vapour transport associated with the Asian summer monsoon. The Pacific Decadal Oscillation is also an important influence on precipitation variation in this region, as it can affect the East Asian summer monsoon and the West Pacific Subtropical High.</p

    A Chinese cave links climatechange, social impacts, and humanadaptation over the last 500 years

    No full text
    The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520&ndash;1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem &delta;18O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem &delta;18O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events.</p
    corecore