22 research outputs found
Masked Collaborative Contrast for Weakly Supervised Semantic Segmentation
This study introduces an efficacious approach, Masked Collaborative Contrast
(MCC), to emphasize semantic regions in weakly supervised semantic
segmentation. MCC adroitly incorporates concepts from masked image modeling and
contrastive learning to devise Transformer blocks that induce keys to contract
towards semantically pertinent regions. Unlike prevalent techniques that
directly eradicate patch regions in the input image when generating masks, we
scrutinize the neighborhood relations of patch tokens by exploring masks
considering keys on the affinity matrix. Moreover, we generate positive and
negative samples in contrastive learning by utilizing the masked local output
and contrasting it with the global output. Elaborate experiments on commonly
employed datasets evidences that the proposed MCC mechanism effectively aligns
global and local perspectives within the image, attaining impressive
performance. The source code is available at
\url{https://github.com/fwu11/MCC}
Spatial Distribution Characteristics and Sources of Nutrients and Heavy Metals in the Xiujiang River of Poyang Lake Basin in the Dry Season
In December of 2019, a total of 114 river water samples were collected from 38 sampling sites in the Xiujiang River of the Poyang Lake Basin for three consecutive days. The temperature (T), pH, dissolved oxygen (DO), chemical oxygen demand (CODCr), five-day biochemical oxygen demand (BOD5), total nitrogen (TN), ammonia nitrogen (NH4+-N), total phosphorus (TP), and concentrations of heavy metals (Cr, Cu, Zn and As) of the samples were measured. The results showed that the average concentrations of heavy metals in the mainstream of the Xiujiang River were Cu > Zn > Cr > As, and those in the main tributary of Xiujiang River (named as the Liaohe tributary) were Zn > Cu > Cr > As, which met the class III of the Environmental Quality Standards for Surface Water in China. However, it was founded that TN and NH4+-N in some agricultural areas had not met the class III standard of surface water. Hierarchical clustering analysis grouped sampling sites into four clusters. Clusters 1, cluster 2, cluster 3, and cluster 4 corresponded to an urban industrial area, rural mountainous area, primitive mountainous area, and agricultural area, respectively. The majority of the sampling sites were classified as mountainous rural areas less impacted by human activities, while the Liaohe tributary were urban industrial areas impacted more by human activities. Principal component analysis and correlation analysis results showed that variation of heavy metals and nutrient elements in Xiujiang River is related to the heterogeneity of human activities, which is mainly affected by urban industrial and agricultural pollution, and natural environments of the river with different background values. The results obtained in the current study will potentially provide a scientific basis for the protection and management of freshwater resources and aquatic ecosystems in the Xiujiang River and Poyang Lake Basin
Spatial Distribution Characteristics and Risk Assessment of Nutrient Elements and Heavy Metals in the Ganjiang River Basin
The pollution of water bodies by nutrients and heavy metals can lead to a loss of biodiversity, environmental degradation, and harm to human health. During the two-month monitoring period (e.g., December 2019 to January 2020), variables such as trace metals (e.g., Cu, Zn, As, and Cr), nutrients (e.g., NH4+-N, TN, and TP), water temperature, pH value, dissolved oxygen (DO), chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5) were measured at 102 monitoring points in the main stream and tributaries of the Ganjiang River in the Poyang Lake Basin. A variety of multivariate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), and correlation analysis, were used to conduct risk assessments and source analyses of the nutrient elements and heavy metals in the Ganjiang River system. The results show that although the Ganjiang River Basin is polluted by human activities, its water chemistry characteristics and trace metal and nutrient elements concentrations were better than the national standards. Through principal component analysis, the water pollution sources could be divided into urban sewage, agricultural activities, industrial activities, and the sources of industrial activities and transportation activities. The comprehensive risks of noncarcinogens (Hc) and comprehensive risks of carcinogens (Rc) for adults and children due to drinking water indicated that the risk from drinking water for the children in the basin was greater than that for adults, and that the Hc for adults and children was acceptable. However, the Rc for adults and children was slightly higher than the acceptable values. This study provides a reference for the fine control of the environmental water pollution sources in the Ganjiang river basin and health risk assessments in the basin, which are of great significance for improving the environmental water quality standards in the river basin and for reducing the risk of carcinogenesis
Performance-Based Seismic Fragility and Residual Seismic Resistance Study of a Long-Span Suspension Bridge
Earthquakes can cause serious damage to traffic infrastructure and even induce the collapse of bridges, which is even worse. At the same time, earthquakes are key factors to the overall service capacity of the traffic network. Therefore, mastering the failure mechanism and evaluating accurate residual seismic resistance of a bridge under earthquakes are of great significance to the rapid recovery of traffic network function. For this reason, a performance-based methodology for the evaluation of the residual seismic resistance of a suspension bridge is proposed. In this paper, we provide the fragility curves of the key sections of the pier by incremental dynamic analysis (IDA), mathematical statistical analysis, and the damage law and obtained the failure state of the structure and the overall seismic capacity residual ratio and the stage seismic capacity residual ratio of the structure. Then, based on the research results of IDA, the reserve seismic capacity is analyzed as well. The research results explore a new method to accurately estimate the residual seismic capacity for resilience assessment
Spatio-Temporal Analysis and Health Risk Assessment of Heavy Metals in Water from the Fuhe River, South China
With rapid developments in society and economy, the concentrations of heavy metals in surface water in South China have increased significantly, which poses a serious threat to the regional water security. In this study, the Fuhe River watershed in South China was selected as the study area to analyze physicochemical characteristics and heavy metal (Cu, Zn, Pb, Cd and Cr) concentrations in river water in the dry and rainy seasons, in 2019, with the purpose of exploring their spatialâtemporal variations and main influences and assessing the potential health risks of heavy metals. The pH value of river water varied from 5.82 to 7.97, and it fluctuated less overall in the dry season, but it oscillated greatly in the rainy season and was lower, especially in the lower reach of the Fuhe River. The electrical conductivity (EC) value changed between 33 ÎŒS/cm and 128 ÎŒS/cm and increased and fluctuated along the river flow in the two periods. The concentrations of Cd, Cr, Cu, Pb, and Zn in river water showed obvious differences between the two periods. The concentrations of Cd and Cu were lower with the ranges from 0.001 ÎŒg/L to 0.67 ÎŒg/L and from 1 ÎŒg/L to 12 ÎŒg/L, respectively, in the dry season than in the rainy season, while there were inverse cases for other heavy metals. Along the river flow, the Cr concentration was stable, whereas other heavy metals showed increasing trends. It was noted that the concentrations of heavy metals in the Fuhe River were, on average, lower than the Chinese drinking standard values, with the concentration of Pb in the dry season significantly higher than the drinking standard value of the World Health Organization (WHO). Principal component analysis and correlation analysis showed that rock weathering and anthropogenic inputs were the main controlling factors of Cu and Zn in the Fuhe River, and human activities were mainly responsible for Pb, Cr, and Cd concentrations. The health risk assessment results showed that the non-carcinogenic risk (HQingestion) value of Pb was greater than 1 in most sampling points in the middle and lower reaches in the dry season, suggesting a significant non-carcinogenic risk for adults and children by direct ingestion. The minimum carcinogenic risk (CRingestion) value of Cr was more than 10â4 in the rainy and dry seasons, and the CRingestion value of Cd in some sampling points was more than 10â4 in the rainy season, indicating significant cancer risks to adults and children. For areas with significant pollution and health risks in the Fuhe River watershed, it is urgent to strengthen the controls of industrial, agricultural, and urban wastewater discharge
A solid-state pân tandem dye-sensitized solar cell
The development of pân tandem dye-sensitized solar cells (t-DSCs) offers the potential for substantial open-circuit voltages, holding great promise for a wide range of applications, particularly in the fields of photovoltaics and photoelectrochemical devices. Most reported t-DSCs are liquid-based, and suffer from unsatisfactory stability due to the leakage of liquid electrolytes and photovoltage that is limited to the energy difference of the two utilized semiconductors. In this study, we present the first realization of a solid-state pân tandem dye-sensitized solar cell that incorporates both p-type and n-type solid-state dye-sensitized solar cells (ssDSCs) by using a transparent indium-doped tin oxide (ITO) back contact for both sides. Notably, this tandem system shows a remarkable open-circuit voltage of 1.4 V, surpassing the constraints of its liquid-based counterparts. Although the performance variations between p-ssDSCs and n-ssDSCs hint at challenges related to charge recombination and the efficiency of p-ssDSCs, this study underscores the significant potential inherent in solid-state tandem configurations
Solid-state p-n tandem dye-sensitized solar cell
The development of p-n tandem dye-sensitized solar cells (t-DSCs) offer the potential for substantial open-circuit voltages, holding great promise for a wide range of applications, particularly in the fields of photovoltaics and photoelectrochemical devices. Most reported t-DSCs are liquid-based, which suffer from unsatisfied stability due to the leakage of liquid electrolytes and photovoltage that is limited to the energy difference of the two utilized semiconductors. In this study, we present the first realization of a solid-state p-n tandem dye-sensitized solar cell that incorporates both p-type and n-type solid-state dye-sensitized solar cells (ssDSCs) in a series configuration, introducing a transparent back contact indium-doped tin oxide (ITO) for both sides. Notably, this tandem system shows a remarkable open-circuit voltage of 1.4V, surpassing the constraints of liquid-based counterparts. Although performance variations between p-ssDSCs and n-ssDSCs hint at challenges related to charge recombination and the efficiency of p-ssDSCs, this study underscores the significant potential inherent in solid-state tandem configurations
Spatio-Temporal Analysis and Health Risk Assessment of Heavy Metals in Water from the Fuhe River, South China
With rapid developments in society and economy, the concentrations of heavy metals in surface water in South China have increased significantly, which poses a serious threat to the regional water security. In this study, the Fuhe River watershed in South China was selected as the study area to analyze physicochemical characteristics and heavy metal (Cu, Zn, Pb, Cd and Cr) concentrations in river water in the dry and rainy seasons, in 2019, with the purpose of exploring their spatial–temporal variations and main influences and assessing the potential health risks of heavy metals. The pH value of river water varied from 5.82 to 7.97, and it fluctuated less overall in the dry season, but it oscillated greatly in the rainy season and was lower, especially in the lower reach of the Fuhe River. The electrical conductivity (EC) value changed between 33 μS/cm and 128 μS/cm and increased and fluctuated along the river flow in the two periods. The concentrations of Cd, Cr, Cu, Pb, and Zn in river water showed obvious differences between the two periods. The concentrations of Cd and Cu were lower with the ranges from 0.001 μg/L to 0.67 μg/L and from 1 μg/L to 12 μg/L, respectively, in the dry season than in the rainy season, while there were inverse cases for other heavy metals. Along the river flow, the Cr concentration was stable, whereas other heavy metals showed increasing trends. It was noted that the concentrations of heavy metals in the Fuhe River were, on average, lower than the Chinese drinking standard values, with the concentration of Pb in the dry season significantly higher than the drinking standard value of the World Health Organization (WHO). Principal component analysis and correlation analysis showed that rock weathering and anthropogenic inputs were the main controlling factors of Cu and Zn in the Fuhe River, and human activities were mainly responsible for Pb, Cr, and Cd concentrations. The health risk assessment results showed that the non-carcinogenic risk (HQingestion) value of Pb was greater than 1 in most sampling points in the middle and lower reaches in the dry season, suggesting a significant non-carcinogenic risk for adults and children by direct ingestion. The minimum carcinogenic risk (CRingestion) value of Cr was more than 10−4 in the rainy and dry seasons, and the CRingestion value of Cd in some sampling points was more than 10−4 in the rainy season, indicating significant cancer risks to adults and children. For areas with significant pollution and health risks in the Fuhe River watershed, it is urgent to strengthen the controls of industrial, agricultural, and urban wastewater discharge
Multi-Scale Observations of Atmosphere Environment and Aerosol Properties over North China during APEC Meeting Periods
This paper reveals a study on air pollution process over North China, applying remote sensing technology, using satellite observation and in situ measurements during the twenty-first Asia-Pacific Economic Cooperation (APEC) meeting, which was held in Beijing between 6 and 12 November when the clear weather was called âAPEC-Blueâ. In the meantime, pollutants concentrations including PM2.5 and PM10 in Beijing were lower than 100 ÎŒg/m3 owing to the effective government measures and policies, as well as meteorological conditions. High aerosol loading (AOD > 1) was observed over south of Beijing and vertical observations showed that the pollutants were prominent near the land surface. Different from the meeting period, high pollutants concentrations with explosive growth (the values of PM2.5 and PM10 peaking at 291 ÎŒg/m3 and 360 ÎŒg/m3 respectively) appeared over Beijing after the meeting period, accompanied by strong temperature inversion and high Relative Humidity (RH) values. The pollution particles transferred from Beijing area to south part of North China. Otherwise, fine-mode particles with strong absorption characteristic (UVAI > 1.5, AOD > 1) covered the Beijing sky in the meantime, indicating the existence of black carbon aerosols