53 research outputs found

    Effects of waste milk feeding on rumen fermentation and bacterial community of pre-weaned and post-weaned dairy calves

    Get PDF
    The objective of this study was to investigate the effect of waste milk with antibiotic residue on rumen fermentation and rumen bacterial composition of dairy calves during pre-weaned and post-weaned periods. A total of 24 Holstein male calves (43.4 ± 0.93 kg body weight, mean ± standard error) were allocated into four blocks based on birth date. Dairy calves were supplied 100% milk replacer (MR, n = 8), 50% milk replacer mixed with 50% waste milk (MM, n = 8), or 100% waste milk (WM, n = 8). Ruminal samples were collected at 49 and 63 days of age and then subjected to determinations of pH value, volatile fatty acids (VFA), ammonia nitrogen (NH3–N) and 16S rRNA gene amplicon sequencing. The results showed that feeding WM had no effect on the pH value, the concentrations of VFA (acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid), and NH3–N in dairy calves compared to feeding MR. However, from 49 to 63 days of age, the pH value (p < 0.001) was significantly increased, while the levels of total VFA (p = 0.004), acetic acid (p = 0.01), propionic acid (p = 0.003) and valeric acid (p < 0.001) were significantly decreased. For rumen microorganisms, there was no differences in bacterial diversity among the treatments. But the relative abundance of Veillonellaceae was significantly lower (p = 0.05) in the calves fed WM than that from MR group at 49 days of age; however, no difference was detected at 63 days of age. Feeding WM to calves tended to reduce family Veillonellaceae and genus Olsenella in the rumen at 49 days of age (p = 0.049). Analysis of temporal changes in rumen bacteria based on alpha-diversity and beta-diversity as well as the microbial relative abundances did not exhibit any difference. In addition, relative abundances of Clostridia_UCG-014, Prevotella, Syntrophococcus, Eubacterium_nodatum_group, Pseudoramibacter and Solobacterium were correlated with rumen pH value and the concentrations of TVFA, propionic acid, isovaleric acid, valeric acid and NH3–N. In conclusion, compare to MR, calves supplied with WM had little changes on the rumen pH value, NH3–N or VFAs contents. Additionally, limited effects could be found on rumen microbiota in the calves fed WM. However, further studies needed to explore if there exist any long-term effects of early-life rumen microbiota modulation on dairy cows

    Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation

    No full text
    Surface acoustic wave (SAW) strain sensors fabricated on piezoelectric substrates have attracted considerable attention due to their attractive features such as passive wireless sensing ability, simple signal processing, high sensitivity, compact size and robustness. To meet the needs of various functioning situations, it is desirable to identify the factors that affect the performance of the SAW devices. In this work, we perform a simulation study on Rayleigh surface acoustic wave (RSAW) based on a stacked Al/LiNbO3 system. A SAW strain sensor with a dual-port resonator was modeled using multiphysics finite element model (FEM) method. While FEM has been widely used for numerical calculations of SAW devices, most of the simulation works mainly focus on SAW modes, SAW propagation characteristics and electromechanical coupling coefficients. Herein, we propose a systematic scheme via analyzing the structural parameters of SAW resonators. Evolution of RSAW eigenfrequency, insertion loss (IL), quality factor (Q) and strain transfer rate with different structural parameters are elaborated by FEM simulations. Compared with the reported experimental results, the relative errors of RSAW eigenfrequency and IL are about 3% and 16.3%, respectively, and the absolute errors are 5.8 MHz and 1.63 dB (the corresponding Vout/Vin is only 6.6%). After structural optimization, the obtained resonator Q increases by 15%, IL decreases by 34.6% and the strain transfer rate increases by 2.4%. This work provides a systematic and reliable solution for the structural optimization of dual-port SAW resonators

    The Influence of Water Reducing Agents on Early Hydration Property of Ferrite Aluminate Cement Paste

    No full text
    The ferrite aluminate cement (FAC) could rapidly lose fluidity or workability due to its excessive hydration rate, and greatly reduce the construction performance. Chemical admixtures are commonly used to provide the workability of cement-based materials. In this study, to ensure required fluidity of FAC, chemically different water reducing agents are incorporated into the FAC pastes. The experiments are performed with aliphatic water reducing agent (AP), polycarboxylic acid water reducing agent (PC) and melamine water reducing agent (MA), respectively. Influence of the water reducing agents on fluidity, setting time, hydration process, hydration product and zeta potential of the fresh cement pastes is investigated. The results show that PC has a better dispersion capacity compared to AP and MA. Besides decreasing water dosage, PC also acts as a retarder, significantly increasing the setting times, delaying the hydration rate and leading to less ettringite in the hydration process of FAC particles. The water reducing agents molecules are adsorbed on the surface of positively charged minerals and hydration products, however, for PC, steric hindrance from the long side chain of PC plays a critical role in dispersing cement particles, whereas AP and MA acting through an electrostatic repulsion force

    Effect of Ca Additions on Ignition Temperature and Multi-Stage Oxidation Behavior of AZ80

    No full text
    AZ80, AZX801, and AZX802 alloys were prepared to investigate the ignition temperature and multi-stage oxidation behavior in air. Besides, the microstructures of alloys before and after oxidation were compared. The results reveal that AZX802 exhibits the characteristics of higher ignition temperature and best oxidation resistance compared to AZX801 and AZ80, which contributes to the increase of melting temperature of secondary phase in matrix due to the formation and increase of Al2Ca, with the addition of Ca in AZ80. In addition, the incubation periods before accelerated oxidation and the beginning of the accelerated oxidation temperatures of AZ80, AZX801, and AZX802 are different during multi-stage oxidation, which also contributes to the different onset melting temperature of the secondary phase. And the beginning of the accelerated oxidation of Mg alloys at high temperature is always accompanied by the onset melting of the low melting temperature of the secondary phase and the growth of oxide nodule on the surface

    Effect of Ca and Gd combined addition on ignition temperature and oxidation resistance of AZ80

    No full text
    The effect of Ca and Gd on microstructures, oxidation behaviors, ignition and oxidation resistance improvement of AZ80-0.8Ca-xGd (x = 0, 0.2, 0.5 and 0.7 wt.%) alloys was investigated. The results show that alloy second phases transform from chain-shaped β-MgAl+ AlCa to scattering dendritic AlCa and further to island-like β-MgAl and crumby structural AlCa + AlGd with Gd content increasing gradually. The category and distribution pattern of second phase play an important role in determining oxidation resistance of alloys. Alloy with scattering dendritic AlCa phase provide more perfect ignition and oxidation resistance than that of the others

    A Survey on Analog-to-Digital Converter Integrated Circuits for Miniaturized High Resolution Ultrasonic Imaging System

    No full text
    As traditional ultrasonic imaging systems (UIS) are expensive, bulky, and power-consuming, miniaturized and portable UIS have been developed and widely utilized in the biomedical field. The performance of integrated circuits (ICs) in portable UIS obviously affects the effectiveness and quality of ultrasonic imaging. In the ICs for UIS, the analog-to-digital converter (ADC) is used to complete the conversion of the analog echo signal received by the analog front end into digital for further processing by a digital signal processing (DSP) or microcontroller unit (MCU). The accuracy and speed of the ADC determine the precision and efficiency of UIS. Therefore, it is necessary to systematically review and summarize the characteristics of different types of ADCs for UIS, which can provide valuable guidance to design and fabricate high-performance ADC for miniaturized high resolution UIS. In this paper, the architecture and performance of ADC for UIS, including successive approximation register (SAR) ADC, sigma-delta (Σ-∆) ADC, pipelined ADC, and hybrid ADC, have been systematically introduced. In addition, comparisons and discussions of different types of ADCs are presented. Finally, this paper is summarized, and presents the challenges and prospects of ADC ICs for miniaturized high resolution UIS

    Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal

    No full text
    In order to compare the workability of AZ110 alloy with and without addition of La-rich Mish Metal (MM), hot compression tests were performed on a Gleeble-3500D thermo-mechanical simulator at the deformation temperature range of 473−623 K and strain rate range of 0.001-1 s. The flow stress, constitutive relation, DRX kinetic model, processing map and microstructure characterization of the alloys were investigated. The results show that the flow stress is very sensitive to deformation temperature and strain rate, and the peak stress of AZ110LC (LC = La-rich MM) alloy is higher than that of AZ110 alloy. The hot deformation behavior of the alloys can be accurately predicted by the constitutive relations. The derived constitutive equations show that the calculated activation energy Q and stress exponent n for AZ110 alloy are higher than the calculated values of AZ110LC alloy. The analysis of DRX kinetic models show that the development of DRX in AZ110LC alloy is earlier than AZ110 alloy at the same deformation condition. The processing maps show that the workability of AZ110LC alloy is significantly more excellent than AZ110 alloy and the microstructures are in good agreement with the calculated results. The AZ110LC alloys can obtain complete DRX microstructure at high strain rate due to its higher stored energy and weak basal texture

    Thermal Performance Optimization Simulation Study of a Passive Solar House with a Light Steel Structure and Phase Change Walls

    No full text
    Phase change materials are used in passive solar house construction with light steel structure walls, which can overcome the problems of weak heat storage capacity and poor utilization of solar heat and effectively solve the thermal defects of light steel structure walls. Based on this, on the basis of preliminary experimental research, this study further carried out theoretical analysis and simulation research on the thermal performance of a light steel structure passive solar house (Trombe form) with PCM walls. Through the heat balance analysis of heat transfer in the heat collecting partition wall, the theoretical calculation formula of the phase change temperature of the PCM was obtained, and it verified theoretically that the phase change temperature value should be 1–3 °C higher than the target indoor air temperature. The evaluation index “accumulated daily indoor temperature offset value” was proposed for evaluating the effect of phase change materials on the indoor temperature of the passive solar house, and “EnergyPlus” software was used to study the influence of the phase change temperature, the amount of material, and the thickness of the insulation layer on the indoor air temperature in a natural day. The results showed that there was a coupling relationship among the performance and between of the thickness of the PCM layer and the phase change temperature. Under typical diurnal climate conditions in the northern Tibetan Plateau of China, the optimal combination of the phase change temperature and the layer thickness was 17 °C and 15 mm, respectively. Especially at a certain temperature, excessive increases in the thickness of the phase transition layer could not improve the indoor thermal environment. For this transition temperature, there exists an optimal transition layer thickness. For a Trombe solar house, the thickness of the insulation layer has an independent impact on indoor temperature compared to other factors, which has an economic value, such as 50 mm in this case. In general, this paper studied the relationship between several important parameters of the phase change wall of a solar house by using numerical simulation methods and quantitatively calculated the optimal parameters under typical meteorological conditions, thus providing a feasible simulation design method for similar engineering applications
    corecore