511 research outputs found

    Infectious Alopecia in a Dog Breeder After Renal Transplantation

    Get PDF
    Tinea capitis rarely occurs in renal transplant recipients. We report this living-related renal transplant patient receiving cyclosporine-based therapy who initially presented with severe exfoliation of the scalp with yellowish-white scales and marked hair loss. The lesions extended to the frontal area and both cheeks, resulting in several skin ulcers with perifocal erythematous inflammatory changes, and palpable cervical lymph nodes. A biopsy of a skin lesion revealed fungal infection and culture yielded Microsporum canis. The patient mentioned an outbreak of ringworm in her breeding dogs during this period. After adequate treatment of the patient and her infected animals with griseofulvin and disinfection of the environment, her skin lesions resolved dramatically, with regrowth of hair

    Temperature Swing Adsorption Process for CO2 Capture Using Polyaniline Solid Sorbent

    Get PDF
    AbstractTo capture carbon dioxide from power plant flue gas which consists of 15% CO2 and 85% N2, with a temperature swing adsorption (TSA) by using polyaniline solid sorbent as the adsorbent, is explored experimentally and theoretically. First, single component adsorption equilibrium data of carbon dioxide on polyaniline solid sorbent is obtained by using Micro-Balance Thermo D-200. Then isotherm curves and the parameters are obtained by numerical method. The adsorption is expressed by the Langmuir-Freundlich isotherm. After accomplishment of isotherm curves, the breakthrough curve experiment is investigated with single adsorption column. The experiments test the change in adsorbed gas concentration at the outlet by adsorbed gas, CO2, and non-adsorbed gas, helium. Finally, this study accentuates the TSA experiments on CO2 purity and recovery by operation variable discussion which includes feed pressure, adsorption temperature and desorption temperature to find optimal operation condition. The results of optimal operation condition are CO2 purity of 47.65% with a 92.46% recovery

    Weakly Supervised Universal Fracture Detection in Pelvic X-rays

    Full text link
    Hip and pelvic fractures are serious injuries with life-threatening complications. However, diagnostic errors of fractures in pelvic X-rays (PXRs) are very common, driving the demand for computer-aided diagnosis (CAD) solutions. A major challenge lies in the fact that fractures are localized patterns that require localized analyses. Unfortunately, the PXRs residing in hospital picture archiving and communication system do not typically specify region of interests. In this paper, we propose a two-stage hip and pelvic fracture detection method that executes localized fracture classification using weakly supervised ROI mining. The first stage uses a large capacity fully-convolutional network, i.e., deep with high levels of abstraction, in a multiple instance learning setting to automatically mine probable true positive and definite hard negative ROIs from the whole PXR in the training data. The second stage trains a smaller capacity model, i.e., shallower and more generalizable, with the mined ROIs to perform localized analyses to classify fractures. During inference, our method detects hip and pelvic fractures in one pass by chaining the probability outputs of the two stages together. We evaluate our method on 4 410 PXRs, reporting an area under the ROC curve value of 0.975, the highest among state-of-the-art fracture detection methods. Moreover, we show that our two-stage approach can perform comparably to human physicians (even outperforming emergency physicians and surgeons), in a preliminary reader study of 23 readers.Comment: MICCAI 2019 (early accept

    A Cascaded Approach for ultraly High Performance Lesion Detection and False Positive Removal in Liver CT Scans

    Full text link
    Liver cancer has high morbidity and mortality rates in the world. Multi-phase CT is a main medical imaging modality for detecting/identifying and diagnosing liver tumors. Automatically detecting and classifying liver lesions in CT images have the potential to improve the clinical workflow. This task remains challenging due to liver lesions' large variations in size, appearance, image contrast, and the complexities of tumor types or subtypes. In this work, we customize a multi-object labeling tool for multi-phase CT images, which is used to curate a large-scale dataset containing 1,631 patients with four-phase CT images, multi-organ masks, and multi-lesion (six major types of liver lesions confirmed by pathology) masks. We develop a two-stage liver lesion detection pipeline, where the high-sensitivity detecting algorithms in the first stage discover as many lesion proposals as possible, and the lesion-reclassification algorithms in the second stage remove as many false alarms as possible. The multi-sensitivity lesion detection algorithm maximizes the information utilization of the individual probability maps of segmentation, and the lesion-shuffle augmentation effectively explores the texture contrast between lesions and the liver. Independently tested on 331 patient cases, the proposed model achieves high sensitivity and specificity for malignancy classification in the multi-phase contrast-enhanced CT (99.2%, 97.1%, diagnosis setting) and in the noncontrast CT (97.3%, 95.7%, screening setting)

    Projected Increase of the East Asian Summer Monsoon (Meiyu) in Taiwan by Climate Models With Variable Performance

    Get PDF
    The active phase of the East Asian summer monsoon (EASM) in Taiwan during May and June, known as Meiyu, produces substantial precipitation for water uses in all sectors of society. Following a companion study that analysed the historical increase in the Meiyu precipitation, the present study conducted model evaluation and diagnosis based on the EASM lifecycle over Taiwan. Higher and lower skill groups were identified from 17 Couple Model Intercomparison Project Phase 5 (CMIP5) models, with five models in each group. Despite the difference in model performance, both groups projected a substantial increase in the Meiyu precipitation over Taiwan. In the higher skill group, weak circulation changes and reduced low‐level convergence point to a synoptically unfavourable condition for precipitation. In the lower skill group, intensified low‐level southwesterly winds associated with a deepened upper level trough enhance moisture pooling. Thus, the projected increase in Meiyu precipitation will likely occur through the combined effects of (1) the extension of a strengthened North Pacific anticyclone enhancing southwesterlies; and (2) more systematically, the Clausius–Clapeyron relationship that increases precipitation intensity in a warmer climate. The overall increase in the Meiyu precipitation projected by climate models of variable performance supports the observed tendency toward more intense rainfall in Taiwan and puts its early June 2017 extreme precipitation events into perspective
    corecore