14 research outputs found

    Projected Increase of the East Asian Summer Monsoon (Meiyu) in Taiwan by Climate Models With Variable Performance

    Get PDF
    The active phase of the East Asian summer monsoon (EASM) in Taiwan during May and June, known as Meiyu, produces substantial precipitation for water uses in all sectors of society. Following a companion study that analysed the historical increase in the Meiyu precipitation, the present study conducted model evaluation and diagnosis based on the EASM lifecycle over Taiwan. Higher and lower skill groups were identified from 17 Couple Model Intercomparison Project Phase 5 (CMIP5) models, with five models in each group. Despite the difference in model performance, both groups projected a substantial increase in the Meiyu precipitation over Taiwan. In the higher skill group, weak circulation changes and reduced low‐level convergence point to a synoptically unfavourable condition for precipitation. In the lower skill group, intensified low‐level southwesterly winds associated with a deepened upper level trough enhance moisture pooling. Thus, the projected increase in Meiyu precipitation will likely occur through the combined effects of (1) the extension of a strengthened North Pacific anticyclone enhancing southwesterlies; and (2) more systematically, the Clausius–Clapeyron relationship that increases precipitation intensity in a warmer climate. The overall increase in the Meiyu precipitation projected by climate models of variable performance supports the observed tendency toward more intense rainfall in Taiwan and puts its early June 2017 extreme precipitation events into perspective

    Tsengwen Reservoir Watershed Hydrological Flood Simulation Under Global Climate Change Using the 20 km Mesh Meteorological Research Institute Atmospheric General Circulation Model (MRI-AGCM)

    Full text link
    Severe rainstorms have occurred more frequently in Taiwan over the last decade. To understand the flood characteristics of a local region under climate change, a hydrological model simulation was conducted for the Tsengwen Reservoir watershed. The model employed was the Integrated Flood Analysis System (IFAS), which has a conceptual, distributed rainfall-runoff analysis module and a GIS data-input function. The high-resolution rainfall data for flood simulation was categorized into three terms: 1979 - 2003 (Present), 2015 - 2039 (Near-future), and 2075 - 2099 (Future), provided by the Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). Ten extreme rainfall (top ten) events were selected for each term in descending order of total precipitation volume. Due to the small watershed area the MRI-AGCM3.2S data was downsized into higher resolution data using the Weather Research and Forecasting Model. The simulated discharges revealed that most of the Near-future and Future peaks caused by extreme rainfall increased compared to the Present peak. These ratios were 0.8 - 1.6 (Near-future/Present) and 0.9 - 2.2 (Future/Present), respectively. Additionally, we evaluated how these future discharges would affect the reservoir¡¦s flood control capacity, specifically the excess water volume required to be stored while maintaining dam releases up to the dam¡¦s spillway capacity or the discharge peak design for flood prevention. The results for the top ten events show that the excess water for the Future term exceeded the reservoir¡¦s flood control capacity and was approximately 79.6 - 87.5% of the total reservoir maximum capacity for the discharge peak design scenario

    Levee Overtopping Risk Assessment under Climate Change Scenario in Kao-Ping River, Taiwan

    No full text
    With the growing concern about the failure risk of river embankments in a rapidly changing climate, this study aims to quantify the overtopping probability of river embankment in Kao-Ping River basin in southern Taiwan. A water level simulation model is calibrated and validated with historical typhoon events and the calibrated model is further used to assess overtopping risk in the future under a climate change scenario. A dynamic downscaled projection dataset, provided by Meteorological Research Institute (MRI) has been further downscaled to 5-km grids and bias-corrected with a quantile mapping method, is used to simulate the water level of Kao-Ping River in the future. Our results highlighted that the overtopping risk of Kao-Ping River increased by a factor of 5.7~8.0 by the end of the 21st century

    The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform: A Decade of Climate Research

    No full text
    Taiwan’s climate change projections have always presented a challenge due to Taiwan’s size and unique meteorological and geographical characteristics. The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP), funded by the Ministry of Science and Technology, Taiwan, is a decade-long climate research project with the most predominant climate data provider and national adaptation policymaking in the country. This paper outlines the evolution of the project. It describes the project’s major achievements, including climate projection arising from participation in the WCRP Coupled Model Inter-comparison Project (CMIP), dynamically and statistically downscaled data with resolutions up to 5 km grid, impact assessments of various themes, such as flooding, as well as the support of national policies through approaches including risk maps, climate data, and knowledge brokering

    Assessment of Flood Risk Map under Climate Change RCP8.5 Scenarios in Taiwan

    No full text
    Climate change has exerted a significant global impact in recent years, and extreme weather-related hazards and incidents have become the new normal. For Taiwan in particular, the corresponding increase in disaster risk threatens not only the environment but also the lives, safety, and property of people. This highlights the need to develop a methodology for mapping disaster risk under climate change and delineating those regions that are potentially high-risk areas requiring adaptation to a changing climate in the future. This study provides a framework of flood risk map assessment under the RCP8.5 scenario by using different spatial scales to integrate the projection climate data of high resolution, inundation potential maps, and indicator-based approach at the end of the 21st century in Taiwan. The reference period was 1979–2003, and the future projection period was 2075–2099. High-resolution climate data developed by dynamic downscaling of the MRI-JMA-AGCM model was used to assess extreme rainfall events. The flood risk maps were constructed using two different spatial scales: the township level and the 5 km × 5 km grid. As to hazard-vulnerability(H-V) maps, users can overlay maps of their choice—such as those for land use distribution, district planning, agricultural crop distribution, or industrial distribution. Mapping flood risk under climate change can support better informed decision-making and policy-making processes in planning and preparing to intervene and control flood risks. The elderly population distribution is applied as an exposure indicator in order to guide advance preparation of evacuation plans for high-risk areas. This study found that higher risk areas are distributed mainly in northern and southern parts of Taiwan and the hazard indicators significantly increase in the northern, north-eastern, and southern regions under the RCP8.5 scenario. Moreover, the near-riparian and coastal townships of central and southern Taiwan have higher vulnerability levels. Approximately 14% of townships have a higher risk level of flooding disaster and another 3% of townships will become higher risk. For higher-risk townships, adaptation measures or strategies are suggested to prioritize improving flood preparation and protecting people and property. Such a flood risk map can be a communication tool to effectively inform decision- makers, citizens, and stakeholders about the variability of flood risk under climate change. Such maps enable decision-makers and national spatial planners to compare the relative flood risk of individual townships countrywide in order to determine and prioritize risk adaptation areas for planning spatial development policies

    Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin

    No full text
    This study evaluated the overflow risk of the Tsengwen River under a climate change scenario by using bias-corrected dynamic downscaled data as inputs for a SOBEK model (Deltares, the Netherlands). The results showed that the simulated river flow rate at Yufeng Bridge (upstream), Erxi Bridge (midstream), and XinZong (1) (downstream) stations are at risk of exceeding the management plan’s flow rate for three projection periods (1979–2003, 2015–2039, 2075–2099). After validation with the geomorphic and hydrological data collected in this study, the frequency at which the flow rate exceeded the design flood was 2 in 88 events in the base period (1979–2003), 6 in 82 events in the near future (2015–2039), and 10 in 81 events at the end of the century (2075–2099)

    Assessment of Flood Risk Map under Climate Change RCP8.5 Scenarios in Taiwan

    No full text
    Climate change has exerted a significant global impact in recent years, and extreme weather-related hazards and incidents have become the new normal. For Taiwan in particular, the corresponding increase in disaster risk threatens not only the environment but also the lives, safety, and property of people. This highlights the need to develop a methodology for mapping disaster risk under climate change and delineating those regions that are potentially high-risk areas requiring adaptation to a changing climate in the future. This study provides a framework of flood risk map assessment under the RCP8.5 scenario by using different spatial scales to integrate the projection climate data of high resolution, inundation potential maps, and indicator-based approach at the end of the 21st century in Taiwan. The reference period was 1979–2003, and the future projection period was 2075–2099. High-resolution climate data developed by dynamic downscaling of the MRI-JMA-AGCM model was used to assess extreme rainfall events. The flood risk maps were constructed using two different spatial scales: the township level and the 5 km × 5 km grid. As to hazard-vulnerability(H-V) maps, users can overlay maps of their choice—such as those for land use distribution, district planning, agricultural crop distribution, or industrial distribution. Mapping flood risk under climate change can support better informed decision-making and policy-making processes in planning and preparing to intervene and control flood risks. The elderly population distribution is applied as an exposure indicator in order to guide advance preparation of evacuation plans for high-risk areas. This study found that higher risk areas are distributed mainly in northern and southern parts of Taiwan and the hazard indicators significantly increase in the northern, north-eastern, and southern regions under the RCP8.5 scenario. Moreover, the near-riparian and coastal townships of central and southern Taiwan have higher vulnerability levels. Approximately 14% of townships have a higher risk level of flooding disaster and another 3% of townships will become higher risk. For higher-risk townships, adaptation measures or strategies are suggested to prioritize improving flood preparation and protecting people and property. Such a flood risk map can be a communication tool to effectively inform decision- makers, citizens, and stakeholders about the variability of flood risk under climate change. Such maps enable decision-makers and national spatial planners to compare the relative flood risk of individual townships countrywide in order to determine and prioritize risk adaptation areas for planning spatial development policies

    Simulation of the Impact of Environmental Disturbances on Forest Biomass in Taiwan

    Get PDF
    This study seeks to understand the impact on the forest biomass of different kinds of environmental disturbance, including high winds from typhoons, land-use/land-cover changes (LULCC), and CO2 fertilization. A series of factorial experiments addressing the impact of different types of environmental disturbance on the forest biomass in Taiwan was conducted using the advanced ORCHIDEE-CAN land surface model with a recently developed wind-throw module. The climatic forcing driving the ORCHIDEE-CAN land surface model was first simulated by an atmospheric general circulation model, then dynamically downscaled to a more satisfactory spatial and temporal resolution. The initial and boundary conditions applied in the numerical simulations were based on the long-term CO2 concentration and LULCC reconstruction, respectively. The model simulation showed an increase in the aboveground wood volume from 209 m3 ha−1 in 1979 to 229 m3 ha−1 in 2017, and the dynamics were consistent with those recorded in the national forest inventory. The annual average carbon sequestration rate over the past 39 years was 0.5 m3 ha−1 yr−1 for a forested area of 2.4 M ha. The most surprising finding was the contribution of the wind disturbance to wood loss, which was at almost the same level as the annual carbon sequestration rate. The LULCC experiment showed a trade-off between afforestation and deforestation in forest biomass accumulation in Taiwan from 1979 to 2017. The CO2 fertilization effect contributed to an enhancement of forest biomass stock of around 39%, while the CO2 concentration increased from 296 to 406 ppm over 39 years

    Hydrological Flood Simulation Using a Design Hyetograph Created from Extreme Weather Data of a High-Resolution Atmospheric General Circulation Model

    No full text
    To understand the characteristics of severe floods under global climate change, we created a design hyetograph for a 100-year return period. This incorporates a modified ranking method using the top 10 extreme rainfall events for present, near-future, and far-future periods. The rainfall data sets were projected with a general circulation model with high spatial and temporal resolution and used with a flood model to simulate the higher discharge peaks for the top 10 events of each term in a local watershed. The conventional-like ranking method, in which only a dimensionless shape is considered for the creation of a design hyetograph for a temporal distribution of rainfall, likely results in overestimates of discharge peaks because, even with a lower peak of rainfall intensity and a smaller amount of cumulative rainfall, the distribution shape is the only the factor for the design hyetograph. However, the modified ranking method, which considers amounts of cumulative rainfalls, provides a discharge peak from the design hyetograph less affected by a smaller cumulative rainfall depth for extreme rainfall. Furthermore, the effects of global climate change indicate that future discharge peaks will increase by up to three times of those of Present-term peaks, which may result in difficult flood control for the downstream river reaches
    corecore