365 research outputs found

    Liver immune microenvironment and metastasis from colorectal cancer‐pathogenesis and therapeutic perspectives

    Get PDF
    A drastic difference exists between the 5‐year survival rates of colorectal cancer patients with localized cancer and distal organ metastasis. The liver is the most favorable organ for cancer metastases from the colorectum. Beyond the liver‐colon anatomic relationship, emerging evidence highlights the impact of liver immune microenvironment on colorectal liver metastasis. Prior to cancer cell dissemination, hepatocytes secrete multiple factors to recruit or activate immune cells and stromal cells in the liver to form a favorable premetastatic niche. The liver‐resident cells including Kupffer cells, hepatic stellate cells, and liver‐sinusoidal endothelial cells are co‐opted by the recruited cells, such as myeloid‐derived suppressor cells and tumor‐associated macrophages, to establish an immunosuppressive liver microenvironment suitable for tumor cell colonization and outgrowth. Current treatments including radical surgery, systemic therapy, and localized therapy have only achieved good clinical outcomes in a minority of colorectal cancer patients with liver metastasis, which is further hampered by high recurrence rate. Better understanding of the mechanisms governing the metastasis‐prone liver immune microenvironment should open new immuno‐oncology avenues for liver metastasis intervention

    Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro

    Get PDF
    Although peroxisome proliferator-activated receptor gamma (PPARÎł) agonist have been shown to inhibit hepatocellular carcinoma (HCC) development, the role of PPARÎł in hepatocarcinogenesis remains unclear. We investigated the therapeutic efficacy of PPAR

    Structured cost analysis of robotic TME resection for rectal cancer:a comparison between the da Vinci Si and Xi in a single surgeon's experience

    Get PDF
    Background: Robotic-assisted surgery by the da Vinci Si appears to benefit rectal cancer surgery in selected patients, but still has some limitations, one of which is its high costs. Preliminary studies have indicated that the use of the new da Vinci Xi provides some added advantages, but their impact on cost is unknown. The aim of the present study is to compare surgical outcomes and costs of rectal cancer resection by the two platforms, in a single surgeon’s experience. Methods: From April 2010 to April 2017, 90 robotic rectal resections were performed, with either the da Vinci Si (Si-RobTME) or the da Vinci Xi (Xi-RobTME). Based on CUSUM analysis, two comparable groups of 40 consecutive Si-RobTME and 40 consecutive Xi-RobTME were obtained from the prospectively collected database and used for the present retrospective comparative study. Data costs were analysed based on the level of experience on the proficiency–gain curve (p–g curve) by the surgeon with each platform. Results: In both groups, two homogeneous phases of the p–g curve were identified: Si1 and Xi1: cases 1–19, Si2 and Xi2: cases 20–40. A significantly higher number of full RAS operations were achieved in the Xi-RobTME group (p < 0.001). A statistically significant reduction in operating time (OT) during Si2 and Xi2 phase was observed (p < 0.001), accompanied by reduced overall variable costs (OVC), personnel costs (PC) and consumable costs (CC) (p < 0.001). All costs were lower in the Xi2 phase compared to Si2 phase: OT 265 versus 290 min (p = 0.052); OVC 7983 versus 10231.9 (p = 0.009); PC 1151.6 versus 1260.2 (p = 0.052), CC 3464.4 versus 3869.7 (p < 0.001). Conclusions: Our experience confirms a significant reduction of costs with increasing surgeon’s experience with both platforms. However, the economic gain was higher with the Xi with shorter OT, reduced PC and CC, in addition to a significantly larger number of cases performed by the fully robotic approach

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Connexin Mediated Cataract Prevention in Mice

    Get PDF
    Cataracts, named for any opacity in the ocular lens, remain the leading cause of vision loss in the world. Non-surgical methods for cataract prevention are still elusive. We have genetically tested whether enhanced lens gap junction communication, provided by increased α3 connexin (Cx46) proteins expressed from α8(Kiα3) knock-in alleles in Gja8tm1(Gja3)Tww mice, could prevent nuclear cataracts caused by the γB-crystallin S11R mutation in CrygbS11R/S11R mice. Remarkably, homozygous knock-in α8(Kiα3/Kiα3) mice fully prevented nuclear cataracts, while single knock-in α8(Kiα3/−) allele mice showed variable suppression of nuclear opacities in CrygbS11R/S11R mutant mice. Cataract prevention was correlated with the suppression of many pathological processes, including crystallin degradation and fiber cell degeneration, as well as preservation of normal calcium levels and stable actin filaments in the lens. This work demonstrates that enhanced intercellular gap junction communication can effectively prevent or delay nuclear cataract formation and suggests that small metabolites transported through gap junction channels protect the stability of crystallin proteins and the cytoskeletal structures in the lens core. Thus, the use of an array of small molecules to promote lens homeostasis may become a feasible non-surgical approach for nuclear cataract prevention in the future

    Localized Plasticity in the Streamlined Genomes of Vinyl Chloride Respiring Dehalococcoides

    Get PDF
    Vinyl chloride (VC) is a human carcinogen and widespread priority pollutant. Here we report the first, to our knowledge, complete genome sequences of microorganisms able to respire VC, Dehalococcoides sp. strains VS and BAV1. Notably, the respective VC reductase encoding genes, vcrAB and bvcAB, were found embedded in distinct genomic islands (GEIs) with different predicted integration sites, suggesting that these genes were acquired horizontally and independently by distinct mechanisms. A comparative analysis that included two previously sequenced Dehalococcoides genomes revealed a contextually conserved core that is interrupted by two high plasticity regions (HPRs) near the Ori. These HPRs contain the majority of GEIs and strain-specific genes identified in the four Dehalococcoides genomes, an elevated number of repeated elements including insertion sequences (IS), as well as 91 of 96 rdhAB, genes that putatively encode terminal reductases in organohalide respiration. Only three core rdhA orthologous groups were identified, and only one of these groups is supported by synteny. The low number of core rdhAB, contrasted with the high rdhAB numbers per genome (up to 36 in strain VS), as well as their colocalization with GEIs and other signatures for horizontal transfer, suggests that niche adaptation via organohalide respiration is a fundamental ecological strategy in Dehalococccoides. This adaptation has been exacted through multiple mechanisms of recombination that are mainly confined within HPRs of an otherwise remarkably stable, syntenic, streamlined genome among the smallest of any free-living microorganism

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz-∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a ‘snapshot’ introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    SIRNA-Directed In Vivo Silencing of Androgen Receptor Inhibits the Growth of Castration-Resistant Prostate Carcinomas

    Get PDF
    BACKGROUND: Prostate carcinomas are initially dependent on androgens, and castration or androgen antagonists inhibit their growth. After some time though, tumors become resistant and recur with a poor prognosis. The majority of resistant tumors still expresses a functional androgen receptor (AR), frequently amplified or mutated. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that AR is not only expressed, but is still a key therapeutic target in advanced carcinomas, we injected siRNA targeting AR into mice bearing exponentially growing castration-resistant tumors. Quantification of siRNA into tumors and mouse tissues demonstrated their efficient uptake. This uptake silenced AR in the prostate, testes and tumors. AR silencing in tumors strongly inhibited their growth, and importantly, also markedly repressed the VEGF production and angiogenesis. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that carcinomas resistant to hormonal manipulations still depend on the expression of the androgen receptor for their development in vivo. The siRNA-directed silencing of AR, which allows targeting overexpressed as well as mutated isoforms, triggers a strong antitumoral and antiangiogenic effect. siRNA-directed silencing of this key gene in advanced and resistant prostate tumors opens promising new therapeutic perspectives and tools
    • …
    corecore