2,277 research outputs found

    Weyl semimetal phase in non-centrosymmetric transition metal monophosphides

    Get PDF
    Based on first principle calculations, we show that a family of nonmagnetic materials including TaAs, TaP, NbAs and NbP are Weyl semimetal (WSM) without inversion center. We find twelve pairs of Weyl points in the whole Brillouin zone (BZ) for each of them. In the absence of spin-orbit coupling (SOC), band inversions in mirror invariant planes lead to gapless nodal rings in the energy-momentum dispersion. The strong SOC in these materials then opens full gaps in the mirror planes, generating nonzero mirror Chern numbers and Weyl points off the mirror planes. The resulting surface state Fermi arc structures on both (001) and (100) surfaces are also obtained and show interesting shapes, pointing to fascinating playgrounds for future experimental studies.Comment: Updated with k.p model analysis and a movie demonstrating distribution of nodal rings and Weyl points, 19 pages, 4 figures and 1 tabl

    Observation of the chiral anomaly induced negative magneto-resistance in 3D Weyl semi-metal TaAs

    Full text link
    Weyl semi-metal is the three dimensional analog of graphene. According to the quantum field theory, the appearance of Weyl points near the Fermi level will cause novel transport phenomena related to chiral anomaly. In the present paper, we report the first experimental evidence for the long-anticipated negative magneto-resistance generated by the chiral anomaly in a newly predicted time-reversal invariant Weyl semi-metal material TaAs. Clear Shubnikov de Haas oscillations (SdH) have been detected starting from very weak magnetic field. Analysis of the SdH peaks gives the Berry phase accumulated along the cyclotron orbits to be {\pi}, indicating the existence of Weyl points.Comment: Submitted in February'1
    • …
    corecore