465 research outputs found

    A simulation-based method to determine the coefficient of hyperbolic decline curve for tight oil production

    Get PDF
     Tight oil reservoirs are characterized by the ultra low porosity and permeability, making it a great challenge to enhance oil production. Owing to the fast development in hydraulic fracturing technology of horizontal wells, tight oil has been widely explored in North America. Individual wells have a long term of low production after a rapid production decline. This causes low cumulative production in tight oil reservoirs. A rate decline curve is the most common method to forecast their production rates. The forecast can provide useful information during decision making on future development of production wells. In this paper, a relationship is developed between the parameters of a hyperbolic decline curve and the reservoir/fracture properties when a reservoir simulation model is used based on the data from a real field. Understanding of this relationship improves the application of the hyperbolic decline curve and provides a useful reference to forecast production performance in a more convenient and efficient way.Cited as: Yu, Y., Chen, Z., Xu, J. A simulation-based method to determine the coefficient of hyperbolic decline curve for tight oil production. Advances in Geo-Energy Research, 2019, 3(4): 375-380, doi: 10.26804/ager.2019.04.0

    Cryopreservation in Ophthalmology

    Get PDF
    Amniotic membranes (AMs) and corneas are critical materials in ocular surface reconstruction. AM has specific structures (e.g., basement and two types of cells with stemness characteristics: amniotic epithelial cells and amniotic mesenchymal cells), which contribute to its attractive physical and biological properties that make it fundamental to clinical application. The corneal endothelial cell is a vital part of the cornea, which can influence postoperative vision directly. However, widespread use of fresh AM and cornea has been limited due to their short use span and safety concerns. To overcome these concerns, different preservation methods have been introduced. Cryopreservation is distinguished from many preservation methods for its attractive advantages of prolonged use span, optimally retained tissue structure, and minimized infection risk. This review will focus on recent advances of cryopreserved AM and cornea, including different cryopreservation methods and their indications in ophthalmology

    Learning Inter- and Intra-frame Representations for Non-Lambertian Photometric Stereo

    Full text link
    In this paper, we build a two-stage Convolutional Neural Network (CNN) architecture to construct inter- and intra-frame representations based on an arbitrary number of images captured under different light directions, performing accurate normal estimation of non-Lambertian objects. We experimentally investigate numerous network design alternatives for identifying the optimal scheme to deploy inter-frame and intra-frame feature extraction modules for the photometric stereo problem. Moreover, we propose to utilize the easily obtained object mask for eliminating adverse interference from invalid background regions in intra-frame spatial convolutions, thus effectively improve the accuracy of normal estimation for surfaces made of dark materials or with cast shadows. Experimental results demonstrate that proposed masked two-stage photometric stereo CNN model (MT-PS-CNN) performs favorably against state-of-the-art photometric stereo techniques in terms of both accuracy and efficiency. In addition, the proposed method is capable of predicting accurate and rich surface normal details for non-Lambertian objects of complex geometry and performs stably given inputs captured in both sparse and dense lighting distributions.Comment: 9 pages,8 figure

    Efficient and durable uranium extraction from uranium mine tailings seepage water via a photoelectrochemical method

    Get PDF
    Current photocatalytic uranium (U) extraction methods have intrinsic obstacles, such as the recombination of charge carriers, and the deactivation of catalysts by extracted U. Here we show that, by applying a bias potential on the photocatalyst, the photoelectrochemical (PEC) method can address these limitations. We demonstrate that, owing to efficient spatial charge-carriers separation driven by the applied bias, the PEC method enables efficient and durable U extraction. The effects of multiple operation conditions are investigated. The U extraction proceeds via single-step one-electron reduction, resulting in the formation of pentavalent U, which can facilitate future studies on this often-overlooked U species. In real seepage water the PEC method achieves an extraction capacity of 0.67 gU m(-3).h(-1) without deactivation for 156 h continuous operation, which is 17 times faster than the photocatalytic method. This work provides an alternative tool for U resource recovery and facilitates future studies on U(V) chemistry

    Absorption-based algorithm for satellite estimating the particulate organic carbon concentration in the global surface ocean

    Get PDF
    Particulate organic carbon (POC) in the surface ocean contributes to understanding the global ocean carbon cycle system. The surface POC concentration can be effectively detected using satellites. In open oceans, the blue-to-green band ratio (BG) algorithm is often used to obtain global surface ocean POC concentrations. However, POC concentrations are underestimated in waters with complex optical environments. To generate a more accurate global POC mapping in the surface ocean, we developed a new ocean color algorithm using a mixed global-scale in situ POC dataset with the concentration ranging from 11.10 to 4389.28 mg/m3. The new algorithm (a-POC) was established to retrieve the POC concentration using the strong relationship between the absorption coefficient at 490 nm (a(490)) and POC, in which a(490) was from the Ocean Color Climate Change Initiative (OC-CCI) v5.0 suite. Afterward, the a-POC algorithm was applied to OC-CCI v5.0 data for special regions and the global ocean. The performances of the a-POC algorithm and the BG algorithm were compared by combining the match-ups of satellite data and in situ dataset. The results showed that the statistical parameters of the a-POC algorithm were similar to those of the BG algorithm in the Atlantic oligotrophic gyre regions, with a median absolute percentage deviation (MAPD) value of 22.04%. In the eastern coastal waters of the United States and the Chesapeake Bay, the POC concentration retrieved by the a-POC algorithm was highly consistent with the match-ups, and MAPD values were 33.06% and 26.11%. The a-POC algorithm was also applied to the Ocean and Land Color Instrument (OLCI) data pre-processed with different atmospheric correction algorithms to evaluate the universality. The result showed that the a-POC algorithm was robust and less sensitive to atmospheric correction than the BG algorithm

    A Semianalytical Model Using MODIS Data to Estimate Cell Density of Red Tide Algae (Aureococcus anophagefferens)

    Get PDF
    A multiband and a single-band semianalytical model were developed to predict algae cell density distribution. The models were based on cell density (N) dependent parameterizations of the spectral backscattering coefficients, b ( ), obtained from in situ measurements. There was a strong relationship between b ( ) and N, with a minimum regression coefficient of 0.97 at 488 nm and a maximum value of 0.98 at other bands. The cell density calculated by the multiband inversion model was similar to the field measurements of the coastal waters (the average relative error was only 8.9%), but it could not accurately discern the red tide from mixed pixels, and this led to overestimation of the area affected by the red tide. While the single-band inversion model is less precise than the former model in the high chlorophyll water, it could eliminate the impact of the suspended sediments and make more accurate estimates of the red tide area. We concluded that the two models both have advantages and disadvantages; these methods lay the foundation for developing a remote sensing forecasting system for red tides
    corecore