220,736 research outputs found
Pseudo-labels for Supervised Learning on Dynamic Vision Sensor Data, Applied to Object Detection under Ego-motion
In recent years, dynamic vision sensors (DVS), also known as event-based
cameras or neuromorphic sensors, have seen increased use due to various
advantages over conventional frame-based cameras. Using principles inspired by
the retina, its high temporal resolution overcomes motion blurring, its high
dynamic range overcomes extreme illumination conditions and its low power
consumption makes it ideal for embedded systems on platforms such as drones and
self-driving cars. However, event-based data sets are scarce and labels are
even rarer for tasks such as object detection. We transferred discriminative
knowledge from a state-of-the-art frame-based convolutional neural network
(CNN) to the event-based modality via intermediate pseudo-labels, which are
used as targets for supervised learning. We show, for the first time,
event-based car detection under ego-motion in a real environment at 100 frames
per second with a test average precision of 40.3% relative to our annotated
ground truth. The event-based car detector handles motion blur and poor
illumination conditions despite not explicitly trained to do so, and even
complements frame-based CNN detectors, suggesting that it has learnt
generalized visual representations
Application of the linear matching method to creep-fatigue failure analysis of cruciform weldment manufactured of the austenitic steel AISI type 316N(L)
This paper demonstrates the recent extension of the Linear Matching Method (LMM) to include cyclic creep assessment [1] in application to a creep-fatigue analysis of a cruciform weldment made of the stainless steel AISI type 316N(L). The obtained results are compared with the results of experimental studies implemented by Bretherton et al. [2] with the overall objective to identify fatigue strength reduction factors (FSRF) of austenitic weldments for further design application. These studies included a series of strain-controlled tests at 550°C with different combinations of reversed bending moment and dwell time Δt. Five levels of reversed bending moment histories corresponding to defined values of total strain range Δεtot in remote parent material (1%, 0.6%, 0.4%, 0.3%, 0.25%) were used in combination with three variants of creep-fatigue conditions: pure fatigue, 1 hour and 5 hours of dwell period Δt of hold in tension. An overview of previous works devoted to analysis and simulation of these experiments [2] and highlight of the LMM development progress could be found in [3]
Temperature effect on space charge dynamics in XLPE insulation
This paper reports on space charge evolution in crosslinked polyethylene (XLPE) planar samples approximately 1.20 mm thick subjected to electric stress level of 30 kVdc/mm under four temperature 25 oC, 50 oC, 70 oC and 90 oC for 24 hours. Space charge profiles in both as-received and degassed samples were measured using the laser induced pressure pulse (LIPP) technique. The dc threshold stresses at which space charge initiates are greatly affected by testing temperatures. The results suggest that testing temperature has numerous effects on space charge dynamics such as enhancement of ionic dissociation of polar crosslinked by-products, charge injection, charge mobility and electrical conductivity. Space charge distributions of very different nature were seen at lower temperatures when comparing the results of as-received samples with degassed samples. However at higher temperature, the space charge distribution took the same form, although of lower concentration in degassed samples. Space charge distributions are dominated by positive charge when tested at high temperatures regardless of sample treatment and positive charge propagation enhances as testing temperature increases. This can be a major cause of concern as positive charge propagation has been reported to be related to insulation breakdown
The effect of degassing on morphology and space charge
It is believed that space charge buildup in cross-linked polyethylene (XLPE) insulation is the main cause for premature failure of underground power cables. The space charge activities in XLPE depend on many factors such as additives, material treatment, ambient temperature, insulator/electrode interface, etc. Degassing is one of the material treatment process commonly employ in cable manufacturing to improve insulation performance. In this paper, investigation on the effect of degassing period has on the morphology and space charge was carried out. Planar XLPE samples of the same composite were subjected to different degassing time. It is discovered that apart from removing volatile by-products, degassing also anneal XLPE material; changing the morphology as a result
On universal decoherence under gravity: a perspective through the Equivalence Principle
In Nature Phys. 11, 668 (2015) (Ref. [1]), a composite particle prepared in a
pure initial quantum state and propagated in a uniform gravitational field is
shown to undergo a decoherence process at a rate determined by the
gravitational acceleration. By assuming Einstein's Equivalence Principle to be
valid, we demonstrate, first in a Lorentz frame with accelerating detectors,
and then directly in the Lab frame with uniform gravity, that the dephasing
between the different internal states arise not from gravity but rather from
differences in their rest mass, and the mass dependence of the de Broglie
wave's dispersion relation. We provide an alternative view to the situation
considered by Ref. [1], where we propose that gravity plays a kinematic role in
the loss of fringe visibility by giving the detector a transverse velocity
relative to the particle beam; visibility can be easily recovered by giving the
screen an appropriate uniform velocity. We finally propose that dephasing due
to gravity may in fact take place for certain modifications to the
gravitational potential where the Equivalence Principle is violated.Comment: 5 pages, 3 figure
Life-cycle, effort and academic deadwood
It has been observed that university professors sometimes become less research active in their mature years. This paper models the decision to become inactive as a utility maximising problem under conditions of uncertainty and derives an age-dependent inactivity condition for the level of research productivity. The economic analysis is applicable to other professions as well were work effort is difficult to observe along some dimensions
Dynamics of Dry Friction: A Numerical Investigation
We perform extended numerical simulation of the dynamics of dry friction,
based on a model derived from the phenomenological description proposed by T.
Baumberger et al.. In the case of small deviation from the steady sliding
motion, the model is shown to be equivalent to the state- and rate-dependent
friction law which was first introduced by Rice and Ruina on the basis of
experiments on rocks. We obtain the dynamical phase diagram that agrees well
with the experimental results on the paper-on-paper systems. In particular, the
bifurcation between stick-slip and steady sliding are shown to change from a
direct (supercritical) Hopf type to an inverted (subcritical) one as the
driving velocity increases, in agreement with the experiments.Comment: 7 pages, 5 figures, using RevTe
- …