1,068 research outputs found
Cell Surface Phosphorylation And Myogenesis In L6 Rat Myoblasts
Cell surface components are important for myogenic differentiation. Studies with subconfluent day-2 cultures of rat myoblasts revealed that a cell surface 112 kDa protein was phosphorylated by a Ca{dollar}\sp{lcub}++{rcub}{dollar}, F{dollar}\sp-{dollar}, and Mg{dollar}\sp{lcub}++{rcub}{dollar}-dependent ectoprotein kinase (ecto-PK), and that adequate ATP was present on the cell surface for the efficient functioning of this ecto-PK. The following evidence suggests that both the 112 kDa protein and the ecto-PK may play important role(s) in the initiation of myogenesis. (i) The highest phosphorylation activity was observed in subconfluent culture, i.e. before the onset of myogenesis. (ii) Treatment of cells with myogenesis inhibitors also resulted in a corresponding decrease in the phosphorylated 112 kDa protein (p112). (iii) The level of p112 in a conditional myogenesis-defective mutant corresponded with the cell\u27s eventual ability to differentiate. (iv) A mutant defective in the ecto-PK (F72) was impaired in the phosphorylation of 112 kDa and in myogenesis. (v) A mutant containing only a residual level of 112 kDa protein (D1/S4) was defective in both p112 and myogenesis. (vi) Conditional myogenesis mutant D1 cannot undergo myogenesis and the level of phosphorylation of the 112 kDa protein is very low when grown in 10% horse serum, however when grown in 1% horse serum D1 can fuse and the level of phosphorylation of the 112 kDa protein is normal. (vii) Since the level of p112 was normal in another myogenesis-defective mutant, the phosphorylation of this protein was not likely a consequence of myogenic differentiation.;Myogenic differentiation is comprised of a sequential cascade of multiple steps leading to the formation of multinucleated myotubes. Northern blot analyses with myogenic factor cDNAs and muscle-specific protein cDNAs showed that mutants D1/S4 and F72 had normal Myf5 transcript level, but much lower transcript levels of Myf4, NCAM, MHC, MLC, and TnT than their parental L6 cells. Similar results were observed when L6 cells were treated with myogenesis inhibitors such as phloretin and 5-bromo-2-deoxyuridine (BrdUrd). These findings further suggested that the ecto-PK and 112 kDa protein might be involved in the early stage of myogenesis. When mutants D1/S4 and F72 were transfected with the myf4 cDNA, the transcript levels of MHC, MLC, and TnT were elevated in both transfected cell lines. However the level of p112 and the transcript levels of NCAM and Myf5 were unaltered in these transfectants. These results suggested that the site of action of ecto-PK and 112 kDa protein might occur after Myf5, and before NCAM and Myf4 in the myogenic pathway
Climate Change: Causes, Impacts and Adaptation
A series of posters representing updated data and information about climate change science are displayed along the walkway on the first floor in Building F. These posters are collected, summarized and synthesized from peer-reviewed publications from the UN Intergovernmental Panel on Climate Change; UN Food and Agriculture Organization; U.S. Environmental Agency; U.S. Climate Change Science Program and U.S. National Research Council.
The overall objective of the project is to increase the Governors State University community\u27s awareness of the climate change issue and enhance the intellectual pursuits for better understanding of interaction between human activities and the environments
Impacts of Plant Community Changes on Soil Carbon Contents in Northeastern Illinois
Land-cover changes not only affect regional climates through alteration in surface energy and water balance, but also affect key ecological processes, such as carbon (C) cycling and sequestration in plant ecosystems. The object of this study was to investigate the effects of land-cover changes on the distribution of soil organic carbon (SOC) contents under four plant community types (deciduous forests, pine forests, mixed pine-deciduous forests, and prairies) in northeastern Illinois, USA. Soil samples were collected from incremental soil depths (0–10, 10–20, 20–30, and 30–50 cm) under the studied plant communities. The results showed that SOC concentration decreased with increases of soil depth in the studied forests and prairies. No significant differences of SOC concentrations were found at the upper soil layers (0–10 cm) among the four plant types. However, SOC concentrations were statistically higher at the lower soil depth (30–40 cm) in prairies than in other three forest types. The SOC storage (0–40 cm soil depth) was reduced in an order prairies (250.6) \u3e mixed pine-deciduous forests (240.7) \u3e pine forests (190.1) \u3e deciduous forests (163.4 Mg/ha). The characteristics of relative short life cycle, restively high turnover rate of roots, and large partition of photosynthetic production allocated to belowground were likely attributed to the higher accumulation of C in soils in tallgrass prairies than in forests. Our data indicated the conversion of native tallgrass prairies to pure forest plantations resulted in a considerable decline of SOC storage. Results suggest that land-cover changes have a significant impact on SOC storage and sequestration in plant ecosystems
Anti cancer molecular mechanism of Actinidia chinensis Planch in gastric cancer based on network pharmacology and molecular docking
Purpose: To determine the anti-tumor effects of Actinidia chinensis Planch (ACP) root extract as well as its mechanism of action against gastric cancer (GC) using network pharmacology.Methods: The bioactive compounds and targets of ACP, as well as GC-related genes were identified from a series of public databases. Functional enrichment analysis was conducted to find relevant biological processes and pathways. The survival analysis was conducted using GEPIA tool. Autodock was used to carry out molecular docking between the ingredients and their targets.Results: A total of 20 bioactive compounds with 209 corresponding targets were identified for ACP, and a total of 871 GC-related genes were obtained. Forty-nine (49) targets of ACP were identified as candidate genes for the prevention of GC, and the PPI network with 584 interactions among these genes was constructed. The data demonstrated that the candidate targets were involved in multiple biological processes such as oxidative stress response, apoptosis, and proliferation. Moreover, these candidate targets were significantly associated with cancer-related pathways and signal transduction pathways. The compound-target-pathway network containing 16 bioactive compounds, 49 targets and 10 pathways was constructed and visualized, and the top 3 targets with a higher degree value were AKT1, MYC, and JUN, respectively. Survival analysis revealed significant associations between GC prognosis and several targets (PREP, PTGS1, AR, and PTGS2). Molecular docking further revealed good binding affinities between bioactive compounds and the prognosis-related targets, indicating the potential roles of these ingredient-target interactions in GC protection.Conclusion: Taken together, this study has provided novel clues for the determination of the antigastric cancer mechanism of ACP
A low-cost alternative scheme to detect a 100 Gbps PM-DQPSK signal
We propose and demonstrate a low-cost alternative scheme of direct-detection to detect a 100Gbps polarization-multiplexed differential quadrature phase-shift keying (PM-DQPSK) signal. The proposed scheme is based on a delay line and a polarization rotator; the phase-shift keying signal is first converted into a polarization shift keying signal. Then, this signal is converted into an intensity modulated signal by a polarization beam splitter. Finally, the intensity-modulated signal is detected by balanced photodetectors. In order to demonstrate that our proposed receiver is suitable for using as a PM-DQPSK demodulator, a set of simulations have been performed. In addition to testing the sensitivity, the performance under various impairments, including narrow optical filtering, polarization mode dispersion, chromatic dispersion and polarization sensitivity, is analyzed. The simulation results show that our performance receiver is as good as a conventional receiver based on four delay interferometers. Moreover, in comparison with the typical receiver, fewer components are used in our receiver. Hence, implementation is easier, and total cost is reduced. In addition, our receiver can be easily improved to a bit-rate tunable receiver
Design and optimization of optical, fiber based PSK demodulators for high-bit-rate optical networks
El objetivo principal de esta tesis ha sido el diseño y la optimización de receptores implementados con fibra óptica, para ser usados en redes ópticas de alta velocidad que empleen formatos de modulación de fase. En los últimos años, los formatos de modulación de fase (Phase Shift keying, PSK) han captado gran atención debido a la mejora de sus prestaciones respecto a los formatos de modulación convencionales. Principalmente, presentan una mejora de la eficiencia espectral y una mayor tolerancia a la degradación de la señal causada por la dispersión cromática, la dispersión por modo de polarización y los efectos no-lineales en la fibra óptica. En este trabajo, se analizan en detalle los formatos PSK, incluyendo sus variantes de modulación de fase diferencial (Differential Phase Shift Keying, DPSK), en cuadratura (Differential Quadrature Phase Shift Keying, DQPSK) y multiplexación en polarización (Polarization Multiplexing Differential Quadrature Phase Shift Keying, PM-DQPSK), con la finalidad de diseñar y optimizar los receptores que permita su demodulación. Para ello, se han analizado y desarrollado nuevas estructuras que ofrecen una mejora en las prestaciones del receptor y una reducción de coste comparadas con las actualmente disponibles. Para la demodulación de señales DPSK, en esta tesis, se proponen dos nuevos receptores basados en un interferómetro en lÃnea Mach-Zehnder (MZI) implementado con tecnologÃa todo-fibra. El principio de funcionamiento de los MZI todo-fibra propuestos se asienta en la interferencia modal que se produce en una fibra multimodo (MMF) cuando se situada entre dos monomodo (SMF). Este tipo de configuración (monomodo-multimodo-monomodo, SMS) presenta un buen ratio de extinción interferente si la potencia acoplada en la fibra multimodo se reparte, principal y equitativamente, entre dos modos dominantes. Con este objetivo, se han estudiado y demostrado tanto teórica como experimentalmente dos nuevas estructuras SMS que mejoran el ratio de extinción. Una de las propuestas se basa en emplear una fibra multimodo de Ãndice gradual cuyo perfil del Ãndice de refracción presenta un hundimiento en su zona central. La otra consiste en una estructura SMS con las fibras desalineadas y donde la fibra multimodo es una fibra de Ãndice gradual convencional. Para las dos estructuras, mediante el análisis teórico desarrollado, se ha demostrado que el 80 – 90% de la potencia de entrada se acopla a los dos modos dominantes de la fibra multimodo y se consigue una diferencia inferior al 10% entre ellos. También se ha demostrado experimentalmente que se puede obtener un ratio de extinción de al menos 12 dB. Con el objeto de demostrar la capacidad de estas estructuras para ser empleadas como demoduladores de señales DPSK, se han realizado numerosas simulaciones de un sistema de transmisión óptico completo y se ha analizado la calidad del receptor bajo diferentes perspectivas, tales como la sensibilidad, la tolerancia a un filtrado óptico severo o la tolerancia a las dispersiones cromática y por modo de polarización. En todos los casos se ha concluido que los receptores propuestos presentan rendimientos comparables a los obtenidos con receptores convencionales. En esta tesis, también se presenta un diseño alternativo para la implementación de un receptor DQPSK, basado en el uso de una fibra mantenedora de la polarización (PMF). A través del análisi teórico y del desarrollo de simulaciones numéricas, se ha demostrado que el receptor DQPSK propuesto presenta prestaciones similares a los convencionales. Para complementar el trabajo realizado sobre el receptor DQPSK basado en PMF, se ha extendido el estudio de su principio de demodulación con el objeto de demodular señales PM-DQPSK, obteniendo como resultado la propuesta de una nueva estructura de demodulación. El receptor PM-DQPSK propuesto se basa en la estructura conjunta de una única lÃnea de retardo junto con un rotador de polarización. Se ha analizado la calidad de los receptores DQPSK y PM-DQPSK bajo diferentes perspectivas, tales como la sensibilidad, la tolerancia a un filtrado óptico severo, la tolerancia a las dispersiones cromática y por modo de polarización o su comportamiento bajo condiciones no-ideales. En comparación con los receptores convencionales, nuestra propuesta exhibe prestaciones similares y además permite un diseño más simple que redunda en un coste potencialmente menor. En las redes de comunicaciones ópticas actuales se utiliza la tecnologÃa de multimplexación en longitud de onda (WDM) que obliga al uso de filtros ópticos con bandas de paso lo más estrechas posibles y a emplear una serie de dispositivos que incorporan filtros en su arquitectura, tales como los multiplexores, demultiplexores, ROADMs, conmutadores y OXCs. Todos estos dispositivos conectados entre sà son equivalentes a una cadena de filtros cuyo ancho de banda se va haciendo cada vez más estrecho, llegando a distorsionar la forma de onda de las señales. Por esto, además de analizar el impacto del filtrado óptico en las señales de 40 Gbps DQPSK y 100 Gbps PM-DQPSK, este trabajo de tesis se completa estudiando qué tipo de filtro óptico minimiza las degradaciones causadas en la señal y analizando el número máximo de filtros concatenados que permiten mantener la calidad requerida al sistema. Se han estudiado y simulado cuatro tipos de filtros ópticos;Butterworth, Bessel, FBG y F-P. ABSTRACT The objective of this thesis is the design and optimization of optical fiber-based phase shift keying (PSK) demodulators for high-bit-rate optical networks. PSK modulation formats have attracted significant attention in recent years, because of the better performance with respect to conventional modulation formats. Principally, PSK signals can improve spectrum efficiency and tolerate more signal degradation caused by chromatic dispersion, polarization mode dispersion and nonlinearities in the fiber. In this work, many PSK formats were analyzed in detail, including the variants of differential phase modulation (Differential Phase Shift Keying, DPSK), in quadrature (Differential Quadrature Phase Shift Keying, DQPSK) and polarization multiplexing (Polarization Multiplexing Differential Quadrature Phase Shift Keying, PM-DQPSK), in order to design and optimize receivers enabling demodulations. Therefore, novel structures, which offer good receiver performances and a reduction in cost compared to the current structures, have been analyzed and developed. Two novel receivers based on an all-fiber in-line Mach-Zehnder interferometer (MZI) were proposed for DPSK signal demodulation in this thesis. The operating principle of the all-fiber MZI is based on the modal interference that occurs in a multimode fiber (MMF) when it is located between two single-mode fibers (SMFs). This type of configuration (Single-mode-multimode-single-mode, SMS) can provide a good extinction ratio if the incoming power from the SMF could be coupled equally into two dominant modes excited in the MMF. In order to improve the interference extinction ratio, two novel SMS structures have been studied and demonstrated, theoretically and experimentally. One of the two proposed MZIs is based on a graded-index multimode fiber (MMF) with a central dip in the index profile, located between two single-mode fibers (SMFs). The other one is based on a conventional graded-index MMF mismatch spliced between two SMFs. Theoretical analysis has shown that, in these two schemes, 80 – 90% of the incoming power can be coupled into the two dominant modes exited in the MMF, and the power difference between them is only ~10%. Experimental results show that interference extinction ratio of 12 dB could be obtained. In order to demonstrate the capacity of these two structures for use as DPSK signal demodulators, numerical simulations in a completed optical transmission system have been carried out, and the receiver quality has been analyzed under different perspectives, such as sensitivity, tolerance to severe optical filtering or tolerance to chromatic and polarization mode dispersion. In all cases, from the simulation results we can conclude that the two proposed receivers can provide performances comparable to conventional ones. In this thesis, an alternative design for the implementation of a DQPSK receiver, which is based on a polarization maintaining fiber (PMF), was also presented. To complement the work made for the PMF-based DQPSK receiver, the study of the demodulation principle has been extended to demodulate PM-DQPSK signals, resulting in the proposal of a novel demodulation structure. The proposed PM-DQPSK receiver is based on only one delay line and a polarization rotator. The quality of the proposed DQPSK and PM-DQPSK receivers under different perspectives, such as sensitivity, tolerance to severe optical filtering, tolerance to chromatic dispersion and polarization mode dispersion, or behavior under non-ideal conditions. Compared with the conventional receivers, our proposals exhibit similar performances but allow a simpler design which can potentially reduce the cost. The wavelength division multiplexing (WDM) technology used in current optical communications networks requires the use of optical filters with a passband as narrow as possible, and the use of a series of devices that incorporate filters in their architecture, such as multiplexers, demultiplexers, switches, reconfigurable add-drop multiplexers (ROADMs) and optical cross-connects (OXCs). All these devices connected together are equivalent to a chain of filters whose bandwidth becomes increasingly narrow, resulting in distortion to the waveform of the signals. Therefore, in addition to analyzing the impact of optical filtering on signal of 40 Gbps DQPSK and 100 Gbps PM-DQPSK, we study which kind of optical filter minimizes the signal degradation and analyze the maximum number of concatenated filters for maintaining the required quality of the system. Four types of optical filters, including Butterworth, Bessel, FBG and FP, have studied and simulated
Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection
In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology
and framework for efficient and effective real-time malware detection,
leveraging the best of conventional machine learning (ML) and deep learning
(DL) algorithms. In PROPEDEUTICA, all software processes in the system start
execution subjected to a conventional ML detector for fast classification. If a
piece of software receives a borderline classification, it is subjected to
further analysis via more performance expensive and more accurate DL methods,
via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays
to the execution of software subjected to deep learning analysis as a way to
"buy time" for DL analysis and to rate-limit the impact of possible malware in
the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and
877 commonly used benign software samples from various categories for the
Windows OS. Our results show that the false positive rate for conventional ML
methods can reach 20%, and for modern DL methods it is usually below 6%.
However, the classification time for DL can be 100X longer than conventional ML
methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional
ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the
percentage of software subjected to DL analysis was approximately 40% on
average. Further, the application of delays in software subjected to ML reduced
the detection time by approximately 10%. Finally, we found and discussed a
discrepancy between the detection accuracy offline (analysis after all traces
are collected) and on-the-fly (analysis in tandem with trace collection). Our
insights show that conventional ML and modern DL-based malware detectors in
isolation cannot meet the needs of efficient and effective malware detection:
high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure
Optical signal impairment study of cascaded optical filters in 40 Gbps DQPSK and 100 Gbps PM-DQPSK systems
Optical filters are crucial elements in optical communications. The influence of cascaded filters in the optical signal will affect the communications quality seriously. In this paper we will study and simulate the optical signal impairment caused by different kinds of filters which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (FP). Optical signal impairment is analyzed from an Eye Opening Penalty (EOP) and optical spectrum point of view. The simulation results show that when the center frequency of all filters aligns with the laser’s frequency, the Butterworth has the smallest influence to the signal while the F-P has the biggest. With a -1dB EOP, the amount of cascaded Butterworth optical filters with a bandwidth of 50 GHz is 18 in 40 Gbps NRZ-DQPSK systems and 12 in 100 Gbps PMNRZ- DQPSK systems. The value is reduced to 9 and 6 respectively for Febry-Perot optical filters. In the situation of frequency misalignment, the impairment caused by filters is more serious. Our research shows that with a frequency deviation of 5 GHz, only 12 and 9 Butterworth optical filters can be cascaded in 40 Gbps NRZ-DQPSK and 100 Gbps PM-NRZ-DQPSK systems respectively. We also study the signal impairment caused by different orders of the Butterworth filter model. Our study shows that although the higher-order has a smaller clipping effect in the transmission spectrum, it will introduce a more serious phase ripple which seriously affects the signal. Simulation result shows that the 2nd order Butterworth filter has the best performance
- …