17 research outputs found

    Comparing Brane Inflation to WMAP

    Full text link
    We compare the simplest realistic brane inflationary model to recent cosmological data, including WMAP 3-year cosmic microwave background (CMB) results, Sloan Digital Sky Survey luminous red galaxies (SDSS LRG) power spectrum data and Supernovae Legacy Survey (SNLS) Type 1a supernovae distance measures. Here, the inflaton is simply the position of a D3D3-brane which is moving towards a Dˉ3\bar{D}3-brane sitting at the bottom of a throat (a warped, deformed conifold) in the flux compactified bulk in Type IIB string theory. The analysis includes both the usual slow-roll scenario and the Dirac-Born-Infeld scenario of slow but relativistic rolling. Requiring that the throat is inside the bulk greatly restricts the allowed parameter space. We discuss possible scenarios in which large tensor mode and/or non-Gaussianity may emerge. Here, the properties of a large tensor mode deviate from that in the usual slow-roll scenario, providing a possible stringy signature. Overall, within the brane inflationary scenario, the cosmological data is providing information about the properties of the compactification of the extra dimensions.Comment: 45 pages 11 figure

    Is Brane Inflation Eternal?

    Get PDF
    In this paper, we show that eternal inflation of the random walk type is generically absent in the brane inflationary scenario. Depending on how the brane inflationary universe originated, eternal inflation of the false vacuum type is still quite possible. Since the inflaton is the position of the D3-brane relative to the anti-D3-brane inside the compactified bulk with finite size, its value is bounded. In DBI inflation, the warped space also restricts the amplitude of the scalar fluctuation. These upper bounds impose strong constraints on the possibility of eternal inflation. We find that eternal inflation due to the random walk of the inflaton field is absent in both the KKLMMT slow roll scenario and the DBI scenario. A more careful analysis for the slow-roll case is also presented using the Langevin equation, which gives very similar results. We discuss possible ways to obtain eternal inflation of the random walk type in brane inflation. In the multi-throat brane inflationary scenario, the branes may be generated by quantum tunneling and roll out the throat. Eternal inflation of the false vacuum type inevitably happens in this scenario due to the tunneling process. Since these scenarios have different cosmological predictions, more data from the cosmic microwave background radiation will hopefully select the specific scenario our universe has gone through.Comment: 32 pages; v2: references and comments adde

    Cosmology of the Tachyon in Brane Inflation

    Full text link
    In certain implementations of the brane inflationary paradigm, the exit from inflation occurs when the branes annihilate through tachyon condensation. We investigate various cosmological effects produced by this tachyonic era. We find that only a very small region of the parameter space (corresponding to slow-roll with tiny inflaton mass) allows for the tachyon to contribute some e-folds to inflation. In addition, non-adiabatic density perturbations are generated at the end of inflation. When the brane is moving relativistically this contribution can be of the same order as fluctuations produced 55 e-folds before the end of inflation. The additional contribution is very nearly scale-invariant and enhances the tensor/scalar ratio. Additional non-gaussianities will also be generated, sharpening current constraints on DBI-type models which already predict a significantly non-gaussian signal.Comment: 30 pages, 2 figures; v3, minor revision, JCAP versio

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    Estimators for local non-Gaussianities

    Get PDF
    We study the Likelihood function of data given f_NL for the so-called local type of non-Gaussianity. In this case the curvature perturbation is a non-linear function, local in real space, of a Gaussian random field. We compute the Cramer-Rao bound for f_NL and show that for small values of f_NL the 3-point function estimator saturates the bound and is equivalent to calculating the full Likelihood of the data. However, for sufficiently large f_NL, the naive 3-point function estimator has a much larger variance than previously thought. In the limit in which the departure from Gaussianity is detected with high confidence, error bars on f_NL only decrease as 1/ln Npix rather than Npix^-1/2 as the size of the data set increases. We identify the physical origin of this behavior and explain why it only affects the local type of non-Gaussianity, where the contribution of the first multipoles is always relevant. We find a simple improvement to the 3-point function estimator that makes the square root of its variance decrease as Npix^-1/2 even for large f_NL, asymptotically approaching the Cramer-Rao bound. We show that using the modified estimator is practically equivalent to computing the full Likelihood of f_NL given the data. Thus other statistics of the data, such as the 4-point function and Minkowski functionals, contain no additional information on f_NL. In particular, we explicitly show that the recent claims about the relevance of the 4-point function are not correct. By direct inspection of the Likelihood, we show that the data do not contain enough information for any statistic to be able to constrain higher order terms in the relation between the Gaussian field and the curvature perturbation, unless these are orders of magnitude larger than the size suggested by the current limits on f_NL.Comment: 26 pages. v2: added comments about the approximations used, published JCAP versio

    Observing Brane Inflation

    Full text link
    Linking the slow-roll scenario and the Dirac-Born-Infeld scenario of ultra-relativistic roll (where, thanks to the warp factor, the inflaton moves slowly even with an ultra-relativistic Lorentz factor), we find that the KKLMMT D3/anti-D3 brane inflation is robust, that is, enough e-folds of inflation is quite generic in the parameter space of the model. We show that the intermediate regime of relativistic roll can be quite interesting observationally. Introducing appropriate inflationary parameters, we explore the parameter space and give the constraints and predictions for the cosmological observables in this scenario. Among other properties, this scenario allows the saturation of the present observational bound of either the tensor/scalar ratio r (in the intermediate regime) or the non-Gaussianity f_NL (in the ultra-relativistic regime), but not both.Comment: 31 pages, 12 figures; typo correcte

    Non-gaussianity from the inflationary trispectrum

    Get PDF
    We present an estimate for the non-linear parameter \tau_NL, which measures the non-gaussianity imprinted in the trispectrum of the comoving curvature perturbation, \zeta. Our estimate is valid throughout the inflationary era, until the slow-roll approximation breaks down, and takes into account the evolution of perturbations on superhorizon scales. We find that the non-gaussianity is always small if the field values at the end of inflation are negligible when compared to their values at horizon crossing. Under the same assumption, we show that in Nflation-type scenarios, where the potential is a sum of monomials, the non-gaussianity measured by \tau_NL is independent of the couplings and initial conditions.Comment: 15 pages, uses iopart.sty. Replaced with version accepted by JCAP; journal reference adde

    Non-Gaussianities in Multi-field Inflation

    Get PDF
    We compute the amplitude of the non-Gaussianities in inflationary models with multiple, uncoupled scalar fields. This calculation thus applies to all models of assisted inflation, including N-flation, where inflation is driven by multiple axion fields arising from shift symmetries in a flux stabilized string vacuum. The non-Gaussianities are associated with nonlinear evolution of the field (and density) perturbations, characterized by the parameter fNLf_{NL}. We derive a general expression for the nonlinear parameter, incorporating the evolution of perturbations after horizon-crossing. This is valid for arbitrary separable potentials during slow roll. To develop an intuitive understanding of this system and to demonstrate the applicability of the formalism we examine several cases with quadratic potentials: two-field models with a wide range of mass ratios, and a general N-field model with a narrow mass spectrum. We uncover that fNLf_{NL} is suppressed as the number of e-foldings grows, and that this suppression is increased in models with a broad spectrum of masses. On the other hand, we find no enhancement to fNLf_{NL} that increases with the number of fields. We thus conclude that the production of a large non-Gaussian signal in multi-field models of inflation is very unlikely as long as fields are slowly rolling and potentials are of simple, quadratic form. Finally, we compute a spectrum for the scalar spectral index that incorporates the nonlinear corrections to the fields' evolution.Comment: 23 pages; v.3: minor extensions to match version accepted in JCA

    Large Non-Gaussianities in Single Field Inflation

    Get PDF
    We compute the 3-point correlation function for a general model of inflation driven by a single, minimally coupled scalar field. Our approach is based on the numerical evaluation of both the perturbation equations and the integrals which contribute to the 3-point function. Consequently, we can analyze models where the potential has a "feature", in the vicinity of which the slow roll parameters may take on large, transient values. This introduces both scale and shape dependent non-Gaussianities into the primordial perturbations. As an example of our methodology, we examine the ``step'' potentials which have been invoked to improve the fit to the glitch in the ClC_l for l30l \sim 30, present in both the one and three year WMAP data sets. We show that for the typical parameter values, the non-Gaussianities associated with the step are far larger than those in standard slow roll inflation, and may even be within reach of a next generation CMB experiment such as Planck. More generally, we use this example to explain that while adding features to potential can improve the fit to the 2-point function, these are generically associated with a greatly enhanced signal at the 3-point level. Moreover, this 3-point signal will have a very nontrivial shape and scale dependence, which is correlated with the form of the 2-point function, and may thus lead to a consistency check on the models of inflation with non-smooth potentials.Comment: 23 pages JHEP-style, 7 Figures. Updated with improved results. Accepted for publication by JCA
    corecore