128 research outputs found

    Inhibiting adenoid cystic carcinoma cells growth and metastasis by blocking the expression of ADAM 10 using RNA interference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adenoid cystic carcinoma is one of the most common types of salivary gland cancers. The poor long-term prognosis for patients with adenoid cystic carcinoma is mainly due to local recurrence and distant metastasis. Disintegrin and metalloprotease 10 (ADAM 10) is a transmembrane protein associated with metastasis in a number of diverse of cancers. The aim of this study was to analyze the relationship between ADAM 10 and the invasive and metastatic potentials as well as the proliferation capability of adenoid cystic carcinoma cells <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>Immunohistochemistry and Western blot analysis were applied to detect ADAM 10 expression levels in metastatic cancer tissues, corresponding primary adenoid cystic carcinoma tissues, adenoid cystic carcinoma cell lines with high metastatic potential, and adenoid cystic carcinoma cell lines with low metastatic potential. RNA interference was used to knockdown ADAM 10 expression in adenoid cystic carcinoma cell lines with high metastatic potential. Furthermore, the invasive and metastatic potentials as well as the proliferation capability of the treated cells were observed <it>in vitro </it>and <it>in vivo</it>.</p> <p>Results</p> <p>It was observed that ADAM 10 was expressed at a significantly higher level in metastatic cancer tissues and in adenoid cystic carcinoma cell lines with high metastatic potential than in corresponding primary adenoid cystic carcinomas and adenoid cystic carcinoma cell lines with low metastatic potential. Additionally, silencing of ADAM 10 resulted in inhibition of cell growth and invasion <it>in vitro </it>as well as inhibition of cancer metastasis in an experimental murine model of lung metastases <it>in vivo</it>.</p> <p>Conclusions</p> <p>These studies suggested that ADAM 10 plays an important role in regulating proliferation and metastasis of adenoid cystic carcinoma cells. ADAM 10 is potentially an important therapeutic target for the prevention of tumor metastases in adenoid cystic carcinoma.</p

    Topoisomerase II trapping agent teniposide induces apoptosis and G2/M or S phase arrest of oral squamous cell carcinoma

    Get PDF
    BACKGROUND: Teniposide (VM-26) has been widely used in the treatment of small cell lung cancer, malignant lymphoma, breast cancer, etc. However, there are few reports on VM-26 against oral cancers. The present study was designed to identify the effect of VM-26 against oral squamous cell carcinoma in vitro, and to provide evidence for the feasibility and effectiveness of VM-26 for application to the patients with oral cancer. METHODS: Human tongue squamous cell carcinoma cell line, Tca8113, was used. Cells were incubated with different concentrations of VM-26 for a variety of time span. Cisplatin (CDDP) was employed as a control reagent. MTT assay was used to assess the inhibitory rate of Tca8113 growth. Flow cytometer (FCM), transmission electronic microscope (TEM) and fluorescence staining were employed for determining the cell apoptotic rate. Cell cycle distribution of Tca8113 incubated with VM-26 was examined by flow cytometer assay. Statistic software (SAS 6.12, USA) was used for one-way ANOVA. RESULTS: The IC50 of VM-26 against Tca8113 cells was 0.35 mg/l and that of CDDP was 1.1 mg/l. The morphological changes of Tca8113 cells were observed with fluorescence microscope and TEM. Apoptotic morphological feature could be found in the nucleus. Apoptotic rate of Tca8113 cells incubated with 5.0 mg/l of VM-26 for 72 hours was 81.67% and cells waere arrested at S phase. However, when exposed to 0.15 mg/l of VM-26 for 72 hours, G2/M phase increased from 12.75% to 98.71%, while the apoptotic rate was 17.38%, which was lower than that exposed to 5.0 mg/l of VM-26. CONCLUSION: VM-26 could significantly induce apoptosis of oral squamous cell carcinoma and inhibit cell growth. There may be another pathway to induce apoptosis of oral squamous cell carcinoma cells except for G2/M phase arrest

    Different cDNA microarray patterns of gene expression reflecting changes during metastatic progression in adenoid cystic carcinoma

    Get PDF
    BACKGROUND: The metastatic ability of tumor cells is determined by level of expression of specific genes that may be identified with the aid of cDNA microarray containing thousands of genes and can be used to establish the expression profile of disease related genes in complex biological system. MATERIALS AND METHODS: Salivary adenoid cystic carcinoma cell line and its high metastases adenoid cystic carcinoma clone were used as model systems to reveal the gene expression alteration related to metastasis mechanism by cDNA microarray analysis. The correlation of metastatic phenotypic changes and expression levels of 4 selected genes (encoding CD98, L6, RPL29, and TSH) were further validated by using RT-PCR analysis of human tumor specimens from primary adenoid cystic carcinoma and corresponding metastasis lymph nodes. RESULTS: Of the 7,675 clones of known genes and expressed sequence tags (ESTs) that were analyzed, 30 showed significantly different (minimum 3 fold) expression levels in two cell lines. Out of 30 genes found differentially expressed, 18 were up regulated (with ratio more than 3) and 12 down regulated (with ratio less than 1/3). CONCLUSION: Some of these genes are known to be involved in human tumor antigen, immune surveillance, adhesion, cell signaling pathway and growth control. It is suggested that the microarray in combination with a relevant analysis facilitates rapid and simultaneous identification of multiple genes of interests and in this study it provided a profound clue to screen candidate targets for early diagnosis and intervention

    Promising Noninvasive Cellular Phenotype in Prostate Cancer Cells Knockdown of Matrix Metalloproteinase 9

    Get PDF
    Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics

    CCND1 as a Predictive Biomarker of Neoadjuvant Chemotherapy in Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma

    Get PDF
    BACKGROUND: Cyclin D1 (CCND1) has been associated with chemotherapy resistance and poor prognosis. In this study, we tested the hypothesis that CCND1 expression determines response and clinical outcomes in locally advanced head and neck squamous cell carcinoma (HNSCC) patients treated with neoadjuvant chemotherapy followed by surgery and radiotherapy. METHODOLOGY AND FINDINGS: 224 patients with HNSCC were treated with either cisplatin-based chemotherapy followed by surgery and radiotherapy (neoadjuvant group, n = 100) or surgery and radiotherapy (non-neoadjuvant group, n = 124). CCND1 expression was assessed by immunohistochemistry. CCND1 levels were analyzed with chemotherapy response, disease-free survival (DFS) and overall survival (OS). There was no significant difference between the neoadjuvant group and non-neoadjuvant group in DFS and OS (p = 0.929 and p = 0.760) when patients treated with the indiscriminate administration of cisplatin-based chemotherapy. However, in the neoadjuvant group, patients whose tumors showed a low CCND1 expression more likely respond to chemotherapy (p<0.001) and had a significantly better OS and DFS than those whose tumors showed a high CCND1 expression (73% vs 8%, p<0.001; 63% vs 6%, p<0.001). Importantly, patients with a low CCND1 expression in neoadjuvant group received more survival benefits than those in non-neoadjuvant group (p = 0.016), however patients with a high CCND1 expression and treated with neoadjuvant chemotherapy had a significantly poor OS compared to those treated with surgery and radiotherapy (p = 0.032). A multivariate survival analysis also showed CCND1 expression was an independent predictive factor (p<0.001). CONCLUSIONS: This study suggests that some but not all patients with HNSCC may benefit from neoadjuvant chemotherapy with cisplatin-based regimen and CCND1 expression may serve as a predictive biomarker in selecting patients undergo less than two cycles of neoadjuvant chemotherapy

    VPA improves ferroptosis in tubular epithelial cells after cisplatin-induced acute kidney injury

    Get PDF
    Background: As a novel non-apoptotic cell death, ferroptosis has been reported to play a crucial role in acute kidney injury (AKI), especially cisplatin-induced AKI. Valproic acid (VPA), an inhibitor of histone deacetylase (HDAC) 1 and 2, is used as an antiepileptic drug. Consistent with our data, a few studies have demonstrated that VPA protects against kidney injury in several models, but the detailed mechanism remains unclear.Results: In this study, we found that VPA prevents against cisplatin-induced renal injury via regulating glutathione peroxidase 4 (GPX4) and inhibiting ferroptosis. Our results mainly indicated that ferroptosis presented in tubular epithelial cells of AKI humans and cisplatin-induced AKI mice. VPA or ferrostatin-1 (ferroptosis inhibitor, Fer-1) reduced cisplatin-induced AKI functionally and pathologically, which was characterized by reduced serum creatinine, blood urea nitrogen, and tissue damage in mice. Meanwhile, VPA or Fer-1 treatment in both in vivo and in vitro models, decreased cell death, lipid peroxidation, and expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), reversing downregulation of GPX4. In addition, our study in vitro indicated that GPX4 inhibition by siRNA significantly weakened the protective effect of VPA after cisplatin treatment.Conclusion: Ferroptosis plays an essential role in cisplatin-induced AKI and inhibiting ferroptosis through VPA to protect against renal injury is a viable treatment in cisplatin-induced AKI

    Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo.</p> <p>Methods</p> <p>In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined.</p> <p>Results</p> <p>Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues.</p> <p>Conclusion</p> <p>The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma.</p
    corecore