42 research outputs found

    Relating Leptogenesis to Low Energy Flavor Violating Observables in Models with Spontaneous CP Violation

    Full text link
    In the minimal left-right symmetric model, there are only two intrinsic CP violating phases to account for all CP violation in both the quark and lepton sectors, if CP is broken spontaneously by the complex phases in the VEV's of the scalar fields. In addition, the left- and right-handed Majorana mass terms for the neutrinos are proportional to each other due to the parity in the model. This is thus a very constrained framework, making the existence of correlations among the CP violation in leptogenesis, neutrino oscillation and neutrinoless double beta decay possible. In these models, CP violation in the leptonic sector and CP violation in the quark sector are also related. We find, however, that such connection is rather weak due to the large hierarchy in the bi-doublet VEV required by a realistic quark sector.Comment: RevTeX4, 21 pages; v2: references added, version to appear in Phys. Rev.

    Symmetric Textures in SO(10) and LMA Solution for Solar Neutrinos

    Full text link
    We analyze a model based on SUSY SO(10) combined with SU(2) family symmetry and symmetric mass matrices constructed by the authors recently. Previously, only the parameter space for the LOW and vacuum oscillation (VO) solutions was investigated. We indicate in this note the parameter space which leads to large mixing angle (LMA) solution to the solar neutrino problem with a slightly modified effective neutrino mass matrix. The symmetric mass textures arising from the left-right symmetry breaking and the SU(2) symmetry breaking give rise to very good predictions for the quark and lepton masses and mixing angles. The prediction of our model for the |U_{e\nu_{3}}| element in the Maki-Nakagawa-Sakata (MNS) matrix is close to the sensitivity of current experiments; thus the validity of our model can be tested in the near future. We also investigate the correlation between the |U_{e\nu_{3}}| element and \tan^{2}\theta_{\odot} in a general two-zero neutrino mass texture.Comment: RevTeX4; 9 pages; 1 figur

    Finite flavour groups of fermions

    Full text link
    We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Though in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects.Comment: 89 pages, 6 figures, some references added, rearrangement of part of the material, section on SU(3) subgroups substantially extended, some minor revisions. Version for publication in J. Phys. A. Table 12 corrected to match eq.(256), table 14 and eq.(314) corrected to match the 2-dimensional irreps defined on p.6

    Leptonic CP Violation and Neutrino Mass Models

    Full text link
    We discuss leptonic mixing and CP violation at low and high energies, emphasizing possible connections between leptogenesis and CP violation at low energies, in the context of lepton flavour models. Furthermore we analyse weak basis invariants relevant for leptogenesis and for CP violation at low energies. These invariants have the advantage of providing a simple test of the CP properties of any lepton flavour model.Comment: 26 pages, no figures, submitted to the Focus Issue on `Neutrino Physics` edited by F. Halzen, M. Lindner and A. Suzuki, to be published in New Journal of Physic

    Exploring flavor structure of supersymmetry breaking from rare B decays and unitarity triangle

    Full text link
    We study effects of supersymmetric particles in various rare B decay processes as well as in the unitarity triangle analysis. We consider three different supersymmetric models, the minimal supergravity, SU(5) SUSY GUT with right-handed neutrinos, and the minimal supersymmetric standard model with U(2) flavor symmetry. In the SU(5) SUSY GUT with right-handed neutrinos, we consider two cases of the mass matrix of the right-handed neutrinos. We calculate direct and mixing-induced CP asymmetries in the b to s gamma decay and CP asymmetry in B_d to phi K_S as well as the B_s--anti-B_s mixing amplitude for the unitarity triangle analysis in these models. We show that large deviations are possible for the SU(5) SUSY GUT and the U(2) model. The pattern and correlations of deviations from the standard model will be useful to discriminate the different SUSY models in future B experiments.Comment: revtex4, 36 pages, 10 figure

    Perturbative nonequilibrium dynamics of phase transitions in an expanding universe

    Get PDF
    A complete set of Feynman rules is derived, which permits a perturbative description of the nonequilibrium dynamics of a symmetry-breaking phase transition in λϕ4\lambda\phi^4 theory in an expanding universe. In contrast to a naive expansion in powers of the coupling constant, this approximation scheme provides for (a) a description of the nonequilibrium state in terms of its own finite-width quasiparticle excitations, thus correctly incorporating dissipative effects in low-order calculations, and (b) the emergence from a symmetric initial state of a final state exhibiting the properties of spontaneous symmetry breaking, while maintaining the constraint ≡0\equiv 0. Earlier work on dissipative perturbation theory and spontaneous symmetry breaking in Minkowski spacetime is reviewed. The central problem addressed is the construction of a perturbative approximation scheme which treats the initial symmetric state in terms of the field ϕ\phi, while the state that emerges at later times is treated in terms of a field ζ\zeta, linearly related to ϕ2\phi^2. The connection between early and late times involves an infinite sequence of composite propagators. Explicit one-loop calculations are given of the gap equations that determine quasiparticle masses and of the equation of motion for and the renormalization of these equations is described. The perturbation series needed to describe the symmetric and broken-symmetry states are not equivalent, and this leads to ambiguities intrinsic to any perturbative approach. These ambiguities are discussed in detail and a systematic procedure for matching the two approximations is described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review

    Dynamical Renormalization Group Approach to Quantum Kinetics in Scalar and Gauge Theories

    Get PDF
    We derive quantum kinetic equations from a quantum field theory implementing a diagrammatic perturbative expansion improved by a resummation via the dynamical renormalization group. The method begins by obtaining the equation of motion of the distribution function in perturbation theory. The solution of this equation of motion reveals secular terms that grow in time, the dynamical renormalization group resums these secular terms in real time and leads directly to the quantum kinetic equation. We used this method to study the relaxation in a cool gas of pions and sigma mesons in the O(4) chiral linear sigma model. We obtain in relaxation time approximation the pion and sigma meson relaxation rates. We also find that in large momentum limit emission and absorption of massless pions result in threshold infrared divergence in sigma meson relaxation rate and lead to a crossover behavior in relaxation. We then study the relaxation of charged quasiparticles in scalar electrodynamics (SQED). While longitudinal, Debye screened photons lead to purely exponential relaxation, transverse photons, only dynamically screened by Landau damping lead to anomalous relaxation, thus leading to a crossover between two different relaxational regimes. We emphasize that infrared divergent damping rates are indicative of non-exponential relaxation and the dynamical renormalization group reveals the correct relaxation directly in real time. Finally we also show that this method provides a natural framework to interpret and resolve the issue of pinch singularities out of equilibrium and establish a direct correspondence between pinch singularities and secular terms. We argue that this method is particularly well suited to study quantum kinetics and transport in gauge theories.Comment: RevTeX, 40 pages, 4 eps figures, published versio

    Real-time nonequilibrium dynamics in hot QED plasmas: dynamical renormalization group approach

    Get PDF
    We study the real-time nonequilibrium dynamics in hot QED plasmas implementing a dynamical renormalization group and using the hard thermal loop (HTL) approximation. The focus is on the study of the relaxation of gauge and fermionic mean fields and on the quantum kinetics of the photon and fermion distribution functions. For semihard photons of momentum eT << k << T we find to leading order in the HTL that the gauge mean field relaxes in time with a power law as a result of infrared enhancement of the spectral density near the Landau damping threshold. The dynamical renormalization group reveals the emergence of detailed balance for microscopic time scales larger than 1/k while the rates are still varying with time. The quantum kinetic equation for the photon distribution function allows us to study photon production from a thermalized quark-gluon plasma (QGP) by off-shell effects. We find that for a QGP at temperature T ~ 200 MeV and of lifetime 10 < t < 50 fm/c the hard (k ~ T) photon production from off-shell bremsstrahlung (q -> q \gamma and \bar{q} -> \bar{q}\gamma) at O(\alpha) grows logarithmically in time and is comparable to that produced from on-shell Compton scattering and pair annihilation at O(\alpha \alpha_s). Fermion mean fields relax as e^{-\alpha T t ln(\omega_P t)} with \omega_P=eT/3 the plasma frequency, as a consequence of the emission and absorption of soft magnetic photons. A quantum kinetic equation for hard fermions is obtained directly in real time from a field theoretical approach improved by the dynamical renormalization group. The collision kernel is time-dependent and infrared finite.Comment: RevTeX, 46 pages, including 5 EPS figures, published versio
    corecore