100 research outputs found

    \u3cem\u3eHP-DAEMON\u3c/em\u3e: \u3cem\u3eH\u3c/em\u3eigh \u3cem\u3eP\u3c/em\u3eerformance \u3cem\u3eD\u3c/em\u3eistributed \u3cem\u3eA\u3c/em\u3edaptive \u3cem\u3eE\u3c/em\u3energy-efficient \u3cem\u3eM\u3c/em\u3eatrix-multiplicati\u3cem\u3eON\u3c/em\u3e

    Get PDF
    The demands of improving energy efficiency for high performance scientific applications arise crucially nowadays. Software-controlled hardware solutions directed by Dynamic Voltage and Frequency Scaling (DVFS) have shown their effectiveness extensively. Although DVFS is beneficial to green computing, introducing DVFS itself can incur non-negligible overhead, if there exist a large number of frequency switches issued by DVFS. In this paper, we propose a strategy to achieve the optimal energy savings for distributed matrix multiplication via algorithmically trading more computation and communication at a time adaptively with user-specified memory costs for less DVFS switches, which saves 7.5% more energy on average than a classic strategy. Moreover, we leverage a high performance communication scheme for fully exploiting network bandwidth via pipeline broadcast. Overall, the integrated approach achieves substantial energy savings (up to 51.4%) and performance gain (28.6% on average) compared to ScaLAPACK pdgemm() on a cluster with an Ethernet switch, and outperforms ScaLAPACK and DPLASMA pdgemm() respectively by 33.3% and 32.7% on average on a cluster with an Infiniband switch

    Massive Goldstone (Higgs) mode in two-dimensional ultracold atomic lattice systems

    Get PDF
    We discuss how to reveal the massive Goldstone mode, often referred to as the Higgs amplitude mode, near the superfluid-to-insulator quantum critical point (QCP) in a system of two-dimensional ultracold bosonic atoms in optical lattices. The spectral function of the amplitude response is obtained by analytic continuation of the kinetic energy correlation function calculated by Monte Carlo methods. Our results enable a direct comparison with the recent experiment [M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C. Gross, E. Demler, S. Kuhr, and I. Bloch, Nature (London) 487, 454 (2012)] and demonstrate a good agreement for temperature shifts induced by lattice modulation. Based on our numerical analysis, we formulate the necessary conditions in terms of homogeneity, detuning from the QCP and temperature in order to reveal the massive Goldstone resonance peak in spectral functions experimentally. We also propose to apply a local modulation at the trap center to overcome the inhomogeneous broadening caused by the parabolic trap confinement

    Evidences for interaction-induced Haldane fractional exclusion statistics in one and higher dimensions

    Full text link
    Haldane fractional exclusion statistics (FES) has a long history of intense studies, but its realization in physical systems is rare. Here we study repulsively interacting Bose gases at and near a quantum critical point, and find evidences that such strongly correlated gases obey simple non-mutual FES over a wide range of interaction strengths in both one and two dimensions. Based on exact solutions in one dimension, quantum Monte Carlo simulations and experiments in both dimensions, we show that the thermodynamic properties of these interacting gases, including entropy per particle, density and pressure, are essentially equivalent to those of non-interacting particles with FES. Accordingly, we establish a simple interaction-to-FES mapping that reveals the statistical nature of particle-hole symmetry breaking induced by interaction in such quantum many-body systems. Whereas strongly interacting Bose gases reach full fermionization in one dimension, they exhibit incomplete fermionization in two dimensions. Our results open a route to understanding correlated interacting systems via non-interacting particles with FES in arbitrary dimensions.Comment: There are 4 figures in the main text as well as a supplemental materia

    Semantic reconstruction of continuous language from MEG signals

    Full text link
    Decoding language from neural signals holds considerable theoretical and practical importance. Previous research has indicated the feasibility of decoding text or speech from invasive neural signals. However, when using non-invasive neural signals, significant challenges are encountered due to their low quality. In this study, we proposed a data-driven approach for decoding semantic of language from Magnetoencephalography (MEG) signals recorded while subjects were listening to continuous speech. First, a multi-subject decoding model was trained using contrastive learning to reconstruct continuous word embeddings from MEG data. Subsequently, a beam search algorithm was adopted to generate text sequences based on the reconstructed word embeddings. Given a candidate sentence in the beam, a language model was used to predict the subsequent words. The word embeddings of the subsequent words were correlated with the reconstructed word embedding. These correlations were then used as a measure of the probability for the next word. The results showed that the proposed continuous word embedding model can effectively leverage both subject-specific and subject-shared information. Additionally, the decoded text exhibited significant similarity to the target text, with an average BERTScore of 0.816, a score comparable to that in the previous fMRI study

    Grand Canonical Monte Carlo Simulations of Ethanol Conversion to Propylene Over Zeolite Catalysts

    Get PDF
    The transformation of ethanol to propylene (ETP) was investigated over H-ZSM-5 (40) and H-LEV (40) catalysts. For H-ZSM-5 (40), the propylene yield kept constant at about 20.0% during 8 h. For H-LEV (40), higher initial propylene yield reached 34.0%. However, there is almost no propylene obtained over H-LEV (40) catalyst after 2 h. H-ZSM-5 (40) catalyst exhibited higher stability than H-LEV (40). The lower stability of H-LEV (40) is probably due to coke deposition. The reactant and products adsorption performances in the ethanol conversion reaction over H-ZSM-5 (40) and H-LEV (40) catalysts were studied by Monte Carlo simulations. Results show that the higher adsorption amount of ethanol, ethylene and propylene in H-LEV (40) led to the more difficult desorption of products and higher content of coke deposition
    corecore