68,729 research outputs found

    A probabilistic method for gradient estimates of some geometric flows

    Full text link
    In general, gradient estimates are very important and necessary for deriving convergence results in different geometric flows, and most of them are obtained by analytic methods. In this paper, we will apply a stochastic approach to systematically give gradient estimates for some important geometric quantities under the Ricci flow, the mean curvature flow, the forced mean curvature flow and the Yamabe flow respectively. Our conclusion gives another example that probabilistic tools can be used to simplify proofs for some problems in geometric analysis.Comment: 22 pages. Minor revision to v1. Accepted for publication in Stochastic Processes and their Application

    The similarity metric

    Full text link
    A new class of distances appropriate for measuring similarity relations between sequences, say one type of similarity per distance, is studied. We propose a new ``normalized information distance'', based on the noncomputable notion of Kolmogorov complexity, and show that it is in this class and it minorizes every computable distance in the class (that is, it is universal in that it discovers all computable similarities). We demonstrate that it is a metric and call it the {\em similarity metric}. This theory forms the foundation for a new practical tool. To evidence generality and robustness we give two distinctive applications in widely divergent areas using standard compression programs like gzip and GenCompress. First, we compare whole mitochondrial genomes and infer their evolutionary history. This results in a first completely automatic computed whole mitochondrial phylogeny tree. Secondly, we fully automatically compute the language tree of 52 different languages.Comment: 13 pages, LaTex, 5 figures, Part of this work appeared in Proc. 14th ACM-SIAM Symp. Discrete Algorithms, 2003. This is the final, corrected, version to appear in IEEE Trans Inform. T

    Strong completeness for a class of stochastic differential equations with irregular coefficients

    Full text link
    We prove the strong completeness for a class of non-degenerate SDEs, whose coefficients are not necessarily uniformly elliptic nor locally Lipschitz continuous nor bounded. Moreover, for each tt, the solution flow FtF_t is weakly differentiable and for each p>0p>0 there is a positive number T(p)T(p) such that for all t<T(p)t<T(p), the solution flow Ft()F_t(\cdot) belongs to the Sobolev space W_{\loc}^{1,p}. The main tool for this is the approximation of the associated derivative flow equations. As an application a differential formula is also obtained
    corecore