32,203 research outputs found
The similarity metric
A new class of distances appropriate for measuring similarity relations
between sequences, say one type of similarity per distance, is studied. We
propose a new ``normalized information distance'', based on the noncomputable
notion of Kolmogorov complexity, and show that it is in this class and it
minorizes every computable distance in the class (that is, it is universal in
that it discovers all computable similarities). We demonstrate that it is a
metric and call it the {\em similarity metric}. This theory forms the
foundation for a new practical tool. To evidence generality and robustness we
give two distinctive applications in widely divergent areas using standard
compression programs like gzip and GenCompress. First, we compare whole
mitochondrial genomes and infer their evolutionary history. This results in a
first completely automatic computed whole mitochondrial phylogeny tree.
Secondly, we fully automatically compute the language tree of 52 different
languages.Comment: 13 pages, LaTex, 5 figures, Part of this work appeared in Proc. 14th
ACM-SIAM Symp. Discrete Algorithms, 2003. This is the final, corrected,
version to appear in IEEE Trans Inform. T
Strong completeness for a class of stochastic differential equations with irregular coefficients
We prove the strong completeness for a class of non-degenerate SDEs, whose
coefficients are not necessarily uniformly elliptic nor locally Lipschitz
continuous nor bounded. Moreover, for each , the solution flow is
weakly differentiable and for each there is a positive number such
that for all , the solution flow belongs to the Sobolev
space W_{\loc}^{1,p}. The main tool for this is the approximation of the
associated derivative flow equations. As an application a differential formula
is also obtained
Distributed Collaborative Monitoring in Software Defined Networks
We propose a Distributed and Collaborative Monitoring system, DCM, with the
following properties. First, DCM allow switches to collaboratively achieve flow
monitoring tasks and balance measurement load. Second, DCM is able to perform
per-flow monitoring, by which different groups of flows are monitored using
different actions. Third, DCM is a memory-efficient solution for switch data
plane and guarantees system scalability. DCM uses a novel two-stage Bloom
filters to represent monitoring rules using small memory space. It utilizes the
centralized SDN control to install, update, and reconstruct the two-stage Bloom
filters in the switch data plane. We study how DCM performs two representative
monitoring tasks, namely flow size counting and packet sampling, and evaluate
its performance. Experiments using real data center and ISP traffic data on
real network topologies show that DCM achieves highest measurement accuracy
among existing solutions given the same memory budget of switches
- …