32,203 research outputs found

    The similarity metric

    Full text link
    A new class of distances appropriate for measuring similarity relations between sequences, say one type of similarity per distance, is studied. We propose a new ``normalized information distance'', based on the noncomputable notion of Kolmogorov complexity, and show that it is in this class and it minorizes every computable distance in the class (that is, it is universal in that it discovers all computable similarities). We demonstrate that it is a metric and call it the {\em similarity metric}. This theory forms the foundation for a new practical tool. To evidence generality and robustness we give two distinctive applications in widely divergent areas using standard compression programs like gzip and GenCompress. First, we compare whole mitochondrial genomes and infer their evolutionary history. This results in a first completely automatic computed whole mitochondrial phylogeny tree. Secondly, we fully automatically compute the language tree of 52 different languages.Comment: 13 pages, LaTex, 5 figures, Part of this work appeared in Proc. 14th ACM-SIAM Symp. Discrete Algorithms, 2003. This is the final, corrected, version to appear in IEEE Trans Inform. T

    Strong completeness for a class of stochastic differential equations with irregular coefficients

    Full text link
    We prove the strong completeness for a class of non-degenerate SDEs, whose coefficients are not necessarily uniformly elliptic nor locally Lipschitz continuous nor bounded. Moreover, for each tt, the solution flow FtF_t is weakly differentiable and for each p>0p>0 there is a positive number T(p)T(p) such that for all t<T(p)t<T(p), the solution flow Ft(â‹…)F_t(\cdot) belongs to the Sobolev space W_{\loc}^{1,p}. The main tool for this is the approximation of the associated derivative flow equations. As an application a differential formula is also obtained

    Distributed Collaborative Monitoring in Software Defined Networks

    Full text link
    We propose a Distributed and Collaborative Monitoring system, DCM, with the following properties. First, DCM allow switches to collaboratively achieve flow monitoring tasks and balance measurement load. Second, DCM is able to perform per-flow monitoring, by which different groups of flows are monitored using different actions. Third, DCM is a memory-efficient solution for switch data plane and guarantees system scalability. DCM uses a novel two-stage Bloom filters to represent monitoring rules using small memory space. It utilizes the centralized SDN control to install, update, and reconstruct the two-stage Bloom filters in the switch data plane. We study how DCM performs two representative monitoring tasks, namely flow size counting and packet sampling, and evaluate its performance. Experiments using real data center and ISP traffic data on real network topologies show that DCM achieves highest measurement accuracy among existing solutions given the same memory budget of switches
    • …
    corecore