11,508 research outputs found

    Strongly Coupled Inflaton

    Full text link
    We continue to investigate properties of the strongly coupled inflaton in a setup introduced in arXiv:0807.3191 through the AdS/CFT correspondence. These properties are qualitatively different from those in conventional inflationary models. For example, in slow-roll inflation, the inflaton velocity is not determined by the shape of potential; the fine-tuning problem concerns the dual infrared geometry instead of the potential; the non-Gaussianities such as the local form can naturally become large.Comment: 12 pages; v3, minor revision, comments and reference added, JCAP versio

    The effect of different metallic counterface materials and different surface treatments on the wear and friction of polyamide 66 and its composite in rolling-sliding contact

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/science/journal/00431648 Copyright Elsevier B. V. DOI: 10.1016/S0043-1648(03)00054-1The effect of different metallic counterface materials and different surface treatments on the tribological behaviour of polymer and polymer composite under unlubricated, non-conformal and rolling-sliding contact has been investigated. The most widely used polymer materials - unreinforced polyamide 66 and its composite (RFL4036) – were tested. The metallic materials include aluminium, brass and steel and the surface treatments include Tufftride** treated (known as nitrocarbonising) and magnesium phosphate treated, etc. Tests were conducted over a range of slip ratios at a fixed load of 300 N, 1000 rpm rotational speed using a twin-disc test rig. The experimental results showed that the polyamide composite exhibited less friction and wear than the unreinforced polyamide 66 when running against steel and aluminium counterfaces. However, when tested against brass, polyamide 66 exhibited lower wear than the composite. The surface treatment of steel has a significant effect on the coefficient of friction and the wear rate, as well as on the tribological mechanism, of polyamide 66 composites. It has been observed that a thin film on the contact surface plays a dominant role in reducing the wear and friction of the composite and in suppressing the transverse cracks. This study clearly indicates that both the characteristics of the different counterface metallic materials and the surface treatment greatly control the wear behaviour of polyamide 66 and its composite.Peer reviewe

    Stripe order at low temperatures in La{2-x}Sr{x}NiO4 for 1/3 < x < 1/2

    Full text link
    Stripe order in La{2-x}Sr{x}NiO4 beyond x = 1/3 was studied with neutron scattering technique. At low temperatures, all the samples exhibit hole stripe order. Incommensurability \epsilon of the stripe order is approximately linear in the hole concentration n_h = x + 2\delta up to x = 1/2, where \delta denotes the off-stoichiometry of oxygen atoms. The charge and spin ordering temperatures exhibit maxima at n_h = 1/3, and both decrease beyond n_h > 1/3. For 1/3 < n_h < 1/2, the stripe ordering consists of the mixture of the \epsilon = 1/3 stripe order and the n_h = 1/2 charge/spin order.Comment: REVTeX, 4 pages, 4 figure

    Pairwise wave interactions in ideal polytropic gases

    Full text link
    We consider the problem of resolving all pairwise interactions of shock waves, contact waves, and rarefaction waves in 1-dimensional flow of an ideal polytropic gas. Resolving an interaction means here to determine the types of the three outgoing (backward, contact, and forward) waves in the Riemann problem defined by the extreme left and right states of the two incoming waves, together with possible vacuum formation. This problem has been considered by several authors and turns out to be surprisingly involved. For each type of interaction (head-on, involving a contact, or overtaking) the outcome depends on the strengths of the incoming waves. In the case of overtaking waves the type of the reflected wave also depends on the value of the adiabatic constant. Our analysis provides a complete breakdown and gives the exact outcome of each interaction.Comment: 39 page

    Incompatible sets of gradients and metastability

    Full text link
    We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L1L^1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiment and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.Comment: Archive for Rational Mechanics and Analysis, to appea

    The quadratic spinor Lagrangian is equivalent to the teleparallel theory

    Get PDF
    The quadratic spinor Lagrangian is shown to be equivalent to the teleparallel / tetrad representation of Einstein's theory. An important consequence is that the energy-momentum density obtained from this quadratic spinor Lagrangian is essentially the same as the ``tensor'' proposed by Moller in 1961.Comment: 10 pages, RevTe

    Quasi-local Energy for Spherically Symmetric Spacetimes

    Full text link
    We present two complementary approaches for determining the reference for the covariant Hamiltonian boundary term quasi-local energy and test them on spherically symmetric spacetimes. On the one hand, we isometrically match the 2-surface and extremize the energy. This can be done in two ways, which we call programs I (without constraint) and II (with additional constraints). On the other hand, we match the orthonormal 4-frames of the dynamic and the reference spacetimes. Then, if we further specify the observer by requiring the reference displacement to be the timelike Killing vector of the reference, the result is the same as program I, and the energy can be positive, zero, or even negative. If, instead, we require that the Lie derivatives of the two-area along the displacement vector in both the dynamic and reference spacetimes to be the same, the result is the same as program II, and it satisfies the usual criteria: the energies are non-negative and vanish only for Minkowski (or anti-de Sitter) spacetime.Comment: 16 pages, no figure

    Holographic Nuclei : Supersymmetric Examples

    Full text link
    We provide a dual gravity description of a supersymmetric heavy nucleus, following the idea of our previous paper arXiv:0809.3141. The supersymmetric nucleus consists of a merginal bound state of AA baryons distributed over a ball in 3 dimensions. In the gauge/string duality, the baryon in N=4 super Yang-Mills (SYM) theory corresponds to a D5-brane wrapping S^5 of the AdS_5 x S^5 spacetime, so the nucleus corresponds to a collection of AA D5-branes. We take a large AA and a near horizon limits of a back-reacted geometry generated by the wrapped AA D5-branes, where we find a gap in the supergravity fluctuation spectrum. This spectrum is a gravity dual of giant resonances of heavy nuclei, in the supersymmetric toy example of QCD.Comment: 9 pages, 6 figures; v2:a refernce adde

    Acute stent thrombosis after off-pump coronary bypass surgery: a new and avoidable complication?

    Get PDF

    Advanced Technologies in Energy-Economy Models for Climate Change Assessment

    Get PDF
    Considerations regarding the roles of advanced technologies are crucial in energy-economic modeling, as these technologies, while usually not yet commercially viable, could substitute for fossil energy when relevant policies are in place. To improve the representation of the penetration of advanced technologies, we present a formulation that is parameterized based on observations, while capturing elements of rent and real cost increases if high demand suddenly appears due to large policy shock. The formulation is applied to a global economy-wide model to study the roles of low carbon alternatives in the power sector. While other modeling approaches often adopt specific constraints on expansion, our approach is based on the assumption and observation that these constraints are not absolute—the rate at which advanced technologies will expand is endogenous to economic incentives. The policy simulations are designed to illustrate the response under sudden increased demand for the advanced technologies, and are not intended to represent necessarily realistic price paths for greenhouse gas emissions.The authors gratefully acknowledge the financial support for this work provided by the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants. Suggestions and feedback from participants of the MIT EPPA meeting and Jamie Bartholomay are highly appreciated
    corecore