6,372 research outputs found

    Uniqueness and weak-BV stability for 2×22\times 2 conservation laws

    Full text link
    Let a 1-d system of hyperbolic conservation laws, with two unknowns, be endowed with a convex entropy. We consider the family of small BVBV functions which are global solutions of this equation. For any small BVBV initial data, such global solutions are known to exist. Moreover, they are known to be unique among BVBV solutions verifying either the so-called Tame Oscillation Condition, or the Bounded Variation Condition on space-like curves. In this paper, we show that these solutions are stable in a larger class of weak (and possibly not even BVBV) solutions of the system. This result extends the classical weak-strong uniqueness results which allow comparison to a smooth solution. Indeed our result extends these results to a weak-BVBV uniqueness result, where only one of the solutions is supposed to be small BVBV, and the other solution can come from a large class. As a consequence of our result, the Tame Oscillation Condition, and the Bounded Variation Condition on space-like curves are not necessary for the uniqueness of solutions in the BVBV theory, in the case of systems with 2 unknowns. The method is L2L^2 based. It builds up from the theory of a-contraction with shifts, where suitable weight functions aa are generated via the front tracking method.Comment: 25 pages, 1 figur

    Entanglement of Nambu Spinors and Bell Inequality Test Without Beam Splitters

    Full text link
    The identification of electronic entanglement in solids remains elusive so far, which is owed to the difficulty of implementing spinor-selective beam splitters with tunable polarization direction. Here, we propose to overcome this obstacle by producing and detecting a particular type of entanglement encoded in the Nambu spinor or electron-hole components of quasiparticles excited in quantum Hall edge states. Due to the opposite charge of electrons and holes, the detection of the Nambu spinor translates into a charge-current measurement, which eliminates the need for beam splitters and assures a high detection rate. Conveniently, the spinor correlation function at fixed effective polarizations derives from a single current-noise measurement, with the polarization directions of the detector easily adjusted by coupling the edge states to a voltage gate and a superconductor, both having been realized in experiments. We show that the violation of Bell inequality occurs in a large parameter region. Our work opens a new route for probing quasiparticle entanglement in solid-state physics exempt from traditional beam splitters.Comment: 7 pages, 2 figures, the version published on PR

    Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer

    Get PDF
    Sulfate is an important component of global atmospheric aerosol, and has partially compensated for greenhouse gas-induced warming during the industrial period. The magnitude of direct and indirect radiative forcing of aerosols since preindustrial times is a large uncertainty in climate models, which has been attributed largely to uncertainties in the preindustrial environment. Here, we report observations of the oxygen isotopic composition (Δ<sup>17</sup>O) of sulfate aerosol collected in the remote marine boundary layer (MBL) in spring and summer in order to evaluate sulfate production mechanisms in pristine-like environments. Model-aided analysis of the observations suggests that 33–50 % of sulfate in the MBL is formed via oxidation by hypohalous acids (HOX  =  HOBr + HOCl), a production mechanism typically excluded in large-scale models due to uncertainties in the reaction rates, which are due mainly to uncertainties in reactive halogen concentrations. Based on the estimated fraction of sulfate formed via HOX oxidation, we further estimate that daily-averaged HOX mixing ratios on the order of 0.01–0.1 parts per trillion (ppt  =  pmol/mol) in the remote MBL during spring and summer are sufficient to explain the observations

    Measurement Induced Quantum Coherence Recovery

    Full text link
    We show that measurement can recover the quantum coherence of a qubit in a non-Markovian environment. The experimental demonstration in an optical system is provided by comparing the visibilities (and fidelities) of the final states with and without measurement. This method can be extended to other two-level quantum systems and entangled states in a non-Markovian evolution environment. It may also be used to implement other quantum information processing.Comment: 9 pages, 5 figure

    Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in the Treatment of Osteosarcoma

    Get PDF
    Purpose: To investigate the effect of ursolic acid (UA)-incorporated glycol chitosan (GC) nanoparticles on inhibition of human osteosarcoma.Methods: U2OS and Saos-2 osteosarcoma cells were transfected with ursolic acid (UA) incorporated glycol chitosan (GC) nanoparticles. Ultraviolet (UV)  spectrophotometry was used to measure drug contents in nanoparticles at 365 nm with empty GC vehicles as blank. Bicinchoninic acid assay (BCA) method was employed to determine protein concentration. Identification of apoptosis and necrosis in osteosarcoma cells was performed by propidium iodide and FITC-annexin V reagents, respectively. FAC Scan flow cytometry was used to analyse apoptotic cells.Results: Among the range of UA concentrations tested, the minimum effective concentration was 10 μM with half inhibitory concentration IC50 of 25 μM. In U2OS cells, treatment with 10 and 25 μM UAinduced apoptosis in 5.89 ± 3.90 and 60.54 ± 5.40 % cells, respectively, compared to 2.05 ± 1.01 % cells for control. In Saos-2 cells, exposure to 10 and 25 μM UA induced apoptosis in 9.86 ± 8.89 and 47.54 ± 14.5 % cells, respectively, compared to 1.79 ± 0.23 % for control cells. Western blot analysis revealed  translocation of Bax and Bcl-2 proteins from mitochondria to cell cytosol. Increase in UA concentration  from 10 μM to 25 μM led to increase in the proportion of cells in G0/G1 phase and decrease in the number of cells in S and G2/M phases. These results confirm that UA transfection arrests cell cycle in G0/G1 phase in human osteosarcoma cell lines.Conclusion: UA transfection resulted in the inhibition of cell proliferation, Ezh2 expression inhibition, and apoptosis via mitochondrial pathway due to decrease in membrane potential and release of cytochrome C, as well as cell cycle arrest in G0/G1 phase.Keywords: Osteosarcoma, Cell cycle arrest, Palliation, Glycol chitosan, Ursolic aci

    Unparticle physics in top pair signals at the LHC and ILC

    Full text link
    We study the effects of unparticle physics in the pair productions of top quarks at the LHC and ILC. By considering vector, tensor and scalar unparticle operators, as appropriate, we compute the total cross sections for pair production processes depending on scale dimension d_{\U}. We find that the existence of unparticles would lead to measurable enhancements on the SM predictions at the LHC. In the case of ILC this may become two orders of magnitude larger than that of SM, for smaller values of d_\U, a very striking signal for unparticles.Comment: 19 pages, 9 figures, analysis for ILC has been adde

    High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds

    Get PDF
    Modern methods of theoretical and experimental materials engineering can be greatly facilitated by reliably established guiding trends that set directions for a smart search for new materials with enhanced performance. Those trends can be derived from a thorough analysis of large arrays of the experimental data, obtained both experimentally and theoretically. In the present paper, the structural, elastic, and electronic properties of 30 spinel compounds AB 2 X 4 (A = Be, Mg, Ca, Sr, Ba; B = Al, Ga, In; X = O, S) were investigated using the CRYSTAL14 program. For the first time the lattice constants, bulk moduli, band gaps and density of states for these 30 spinels were systematically calculated and analyzed. Influence of the cation and anion variation on the above-mentioned properties was highlighted. Several relations between lattice constants, bulk modulus and ionic radii, electronegativities of constituting ions were found. Several linear equations are proposed, which provide a convenient way to predict the lattice constants and bulk moduli of isostructural spinels. © 201

    Meta-analysis of effect sizes reported at multiple time points using general linear mixed model

    Get PDF
    Meta-analysis of longitudinal studies combines effect sizes measured at pre-determined time points. The most common approach involves performing separate univariate metaanalyses at individual time points. This simplistic approach ignores dependence between longitudinal effect sizes, which might result in less precise parameter estimates. In this paper, we show how to conduct a meta-analysis of longitudinal effect sizes where we contrast different covariance structures for dependence between effect sizes, both within and between studies. We propose new combinations of covariance structures for the dependence between effect size and utilize a practical example involving meta-analysis of 17 trials comparing postoperative treatments for a type of cancer, where survival is measured at 6, 12, 18 and 24 months post randomization. Although the results from this particular data set show the benefit of accounting for within-study serial correlation between effect sizes, simulations are required to confirm these results.S1 Fig. R-code for meta-analysis.http://www.plosone.orgam2016Statistic
    corecore