25 research outputs found

    Demonstration of optically modulated dispersion forces

    Full text link
    We report the first experiment on the optical modulation of dispersion forces through a change of the carrier density in a Si membrane. For this purpose a high-vacuum based atomic force microscope and excitation light pulses from an Ar laser are used. The experimental results are compared with two theoretical models. The modulation of the dispersion force will find applications in optomechanical micromachines.Comment: 7 pages, 3 figures, opex3.sty is used, text has been made in accordance with the final version to appear in Optics express, 3 misprints are correcte

    Demonstration of the difference Casimir force for samples with different charge carrier densities

    Get PDF
    A measurement of the Casimir force between a gold coated sphere and two Si plates of different carrier densities is performed using a high vacuum based atomic force microscope. The results are compared with the Lifshitz theory and good agreement is found. Our experiment demonstrates that by changing the carrier density of the semiconductor plate by several orders of magnitude it is possible to modify the Casimir interaction. This result may find applications in nanotechnology.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Control of the Casimir force by the modification of dielectric properties with light

    Full text link
    The experimental demonstration of the modification of the Casimir force between a gold coated sphere and a single-crystal Si membrane by light pulses is performed. The specially designed and fabricated Si membrane was irradiated with 514 nm laser pulses of 5 ms width in high vacuum leading to a change of the charge-carrier density. The difference in the Casimir force in the presence and in the absence of laser radiation was measured by means of an atomic force microscope as a function of separation at different powers of the absorbed light. The total experimental error of the measured force differences at a separation of 100 nm varies from 10 to 20% in different measurements. The experimental results are compared with theoretical computations using the Lifshitz theory at both zero and laboratory temperatures. The total theoretical error determined mostly by the uncertainty in the concentration of charge carriers when the light is incident is found to be about 14% at separations less than 140 nm. The experimental data are consistent with the Lifshitz theory at laboratory temperature, if the static dielectric permittivity of high-resistivity Si in the absence of light is assumed to be finite. If the dc conductivity of high-resistivity Si in the absence of light is included into the model of dielectric response, the Lifshitz theory at nonzero temperature is shown to be experimentally inconsistent at 95% confidence. The demonstrated phenomenon of the modification of the Casimir force through a change of the charge-carrier density is topical for applications of the Lifshitz theory to real materials in fields ranging from nanotechnology and condensed matter physics to the theory of fundamental interactions.Comment: 30 pages, 10 figures, 2 table

    Rigorous approach to the comparison between experiment and theory in Casimir force measurements

    Get PDF
    In most experiments on the Casimir force the comparison between measurement data and theory was done using the concept of the root-mean-square deviation, a procedure that has been criticized in literature. Here we propose a special statistical analysis which should be performed separately for the experimental data and for the results of the theoretical computations. In so doing, the random, systematic, and total experimental errors are found as functions of separation, taking into account the distribution laws for each error at 95% confidence. Independently, all theoretical errors are combined to obtain the total theoretical error at the same confidence. Finally, the confidence interval for the differences between theoretical and experimental values is obtained as a function of separation. This rigorous approach is applied to two recent experiments on the Casimir effect.Comment: 10 pages, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    New features of the thermal Casimir force at small separations

    Full text link
    The difference of the thermal Casimir forces at different temperatures between real metals is shown to increase with a decrease of the separation distance. This opens new opportunities for the demonstration of the thermal dependence of the Casimir force. Both configurations of two parallel plates and a sphere above a plate are considered. Different approaches to the theoretical description of the thermal Casimir force are shown to lead to different measurable predictions.Comment: 5 pages, 3 figures, to appear in Phys. Rev. Let

    Casimir Effect in the Presence of Minimal Lengths

    Full text link
    It is expected that the implementation of minimal length in quantum models leads to a consequent lowering of Planck's scale. In this paper, using the quantum model with minimal length of Kempf et al \cite{kempf0}, we examine the effect of the minimal length on the Casimir force between parallel plates.Comment: 10 pages, 2 figure

    Violation of the Nernst heat theorem in the theory of thermal Casimir force between Drude metals

    Full text link
    We give a rigorous analytical derivation of low-temperature behavior of the Casimir entropy in the framework of the Lifshitz formula combined with the Drude dielectric function. An earlier result that the Casimir entropy at zero temperature is not equal to zero and depends on the parameters of the system is confirmed, i.e. the third law of thermodynamics (the Nernst heat theorem) is violated. We illustrate the resolution of this thermodynamical puzzle in the context of the surface impedance approach by several calculations of the thermal Casimir force and entropy for both real metals and dielectrics. Different representations for the impedances, which are equivalent for real photons, are discussed. Finally, we argue in favor of the Leontovich boundary condition which leads to results for the thermal Casimir force that are consistent with thermodynamics.Comment: 24 pages, 3 figures, accepted for publication in Phys. Rev.
    corecore