25 research outputs found
Demonstration of optically modulated dispersion forces
We report the first experiment on the optical modulation of dispersion forces
through a change of the carrier density in a Si membrane. For this purpose a
high-vacuum based atomic force microscope and excitation light pulses from an
Ar laser are used. The experimental results are compared with two theoretical
models. The modulation of the dispersion force will find applications in
optomechanical micromachines.Comment: 7 pages, 3 figures, opex3.sty is used, text has been made in
accordance with the final version to appear in Optics express, 3 misprints
are correcte
Demonstration of the difference Casimir force for samples with different charge carrier densities
A measurement of the Casimir force between a gold coated sphere and two Si
plates of different carrier densities is performed using a high vacuum based
atomic force microscope. The results are compared with the Lifshitz theory and
good agreement is found. Our experiment demonstrates that by changing the
carrier density of the semiconductor plate by several orders of magnitude it is
possible to modify the Casimir interaction. This result may find applications
in nanotechnology.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Control of the Casimir force by the modification of dielectric properties with light
The experimental demonstration of the modification of the Casimir force
between a gold coated sphere and a single-crystal Si membrane by light pulses
is performed. The specially designed and fabricated Si membrane was irradiated
with 514 nm laser pulses of 5 ms width in high vacuum leading to a change of
the charge-carrier density. The difference in the Casimir force in the presence
and in the absence of laser radiation was measured by means of an atomic force
microscope as a function of separation at different powers of the absorbed
light. The total experimental error of the measured force differences at a
separation of 100 nm varies from 10 to 20% in different measurements. The
experimental results are compared with theoretical computations using the
Lifshitz theory at both zero and laboratory temperatures. The total theoretical
error determined mostly by the uncertainty in the concentration of charge
carriers when the light is incident is found to be about 14% at separations
less than 140 nm. The experimental data are consistent with the Lifshitz theory
at laboratory temperature, if the static dielectric permittivity of
high-resistivity Si in the absence of light is assumed to be finite. If the dc
conductivity of high-resistivity Si in the absence of light is included into
the model of dielectric response, the Lifshitz theory at nonzero temperature is
shown to be experimentally inconsistent at 95% confidence. The demonstrated
phenomenon of the modification of the Casimir force through a change of the
charge-carrier density is topical for applications of the Lifshitz theory to
real materials in fields ranging from nanotechnology and condensed matter
physics to the theory of fundamental interactions.Comment: 30 pages, 10 figures, 2 table
Rigorous approach to the comparison between experiment and theory in Casimir force measurements
In most experiments on the Casimir force the comparison between measurement
data and theory was done using the concept of the root-mean-square deviation, a
procedure that has been criticized in literature. Here we propose a special
statistical analysis which should be performed separately for the experimental
data and for the results of the theoretical computations. In so doing, the
random, systematic, and total experimental errors are found as functions of
separation, taking into account the distribution laws for each error at 95%
confidence. Independently, all theoretical errors are combined to obtain the
total theoretical error at the same confidence. Finally, the confidence
interval for the differences between theoretical and experimental values is
obtained as a function of separation. This rigorous approach is applied to two
recent experiments on the Casimir effect.Comment: 10 pages, iopart.cls is used, to appear in J. Phys. A (special issue:
Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005
New features of the thermal Casimir force at small separations
The difference of the thermal Casimir forces at different temperatures
between real metals is shown to increase with a decrease of the separation
distance. This opens new opportunities for the demonstration of the thermal
dependence of the Casimir force. Both configurations of two parallel plates and
a sphere above a plate are considered. Different approaches to the theoretical
description of the thermal Casimir force are shown to lead to different
measurable predictions.Comment: 5 pages, 3 figures, to appear in Phys. Rev. Let
Casimir Effect in the Presence of Minimal Lengths
It is expected that the implementation of minimal length in quantum models
leads to a consequent lowering of Planck's scale. In this paper, using the
quantum model with minimal length of Kempf et al \cite{kempf0}, we examine the
effect of the minimal length on the Casimir force between parallel plates.Comment: 10 pages, 2 figure
Violation of the Nernst heat theorem in the theory of thermal Casimir force between Drude metals
We give a rigorous analytical derivation of low-temperature behavior of the
Casimir entropy in the framework of the Lifshitz formula combined with the
Drude dielectric function. An earlier result that the Casimir entropy at zero
temperature is not equal to zero and depends on the parameters of the system is
confirmed, i.e. the third law of thermodynamics (the Nernst heat theorem) is
violated. We illustrate the resolution of this thermodynamical puzzle in the
context of the surface impedance approach by several calculations of the
thermal Casimir force and entropy for both real metals and dielectrics.
Different representations for the impedances, which are equivalent for real
photons, are discussed. Finally, we argue in favor of the Leontovich boundary
condition which leads to results for the thermal Casimir force that are
consistent with thermodynamics.Comment: 24 pages, 3 figures, accepted for publication in Phys. Rev.