287,217 research outputs found
The effect of temperature evolution on the interior structure of HO-rich planets
For most planets in the range of radii from 1 to 4 R, water is a
major component of the interior composition. At high pressure HO can be
solid, but for larger planets, like Neptune, the temperature can be too high
for this. Mass and age play a role in determining the transition between solid
and fluid (and mixed) water-rich super-Earth. We use the latest high-pressure
and ultra-high-pressure phase diagrams of HO, and by comparing them
with the interior adiabats of various planet models, the temperature evolution
of the planet interior is shown, especially for the state of HO. It
turns out that the bulk of HO in a planet's interior may exist in
various states such as plasma, superionic, ionic, Ice VII, Ice X, etc.,
depending on the size, age and cooling rate of the planet. Different regions of
the mass-radius phase space are also identified to correspond to different
planet structures. In general, super-Earth-size planets (isolated or without
significant parent star irradiation effects) older than about 3 Gyr would be
mostly solid.Comment: Accepted by ApJ, in print for March 2014 (14 pages, 3 colored
figures, 1 table
Advances on creepâfatigue damage assessment in notched components
In this paper, the extended Direct Steady Cyclic Analysis method (eDSCA) within the Linear Matching Method Framework (LMMF) is combined with the Stress Modified Ductility Exhaustion method and the modified Cavity Growth Factor (CGF) for the first time. This new procedure is used to systematically investigate the effect of several load parameters including load level, load type and creep dwell duration on the creepâfatigue crack initiation process in a notched specimen. The results obtained are verified through a direct comparison with experimental results available in the literature demonstrating great accuracy in predicting the crack initiation life and the driving mechanisms. Furthermore, this extensive numerical study highlighted the possible detrimental effect of the creepâratchetting mechanism on the crack growth process. This work has a significant impact on structural integrity assessments of complex industrial components and for the better understanding of creepâfatigue lab scale tests
Undercover EUV Solar Jets Observed by the Interface Region Imaging Spectrograph
It is well-known that extreme ultraviolet emission emitted at the solar
surface is absorbed by overlying cool plasma. Especially in active regions dark
lanes in EUV images suggest that much of the surface activity is obscured.
Simultaneous observations from IRIS, consisting of UV spectra and slit-jaw
images give vital information with sub-arcsecond spatial resolution on the
dynamics of jets not seen in EUV images. We studied a series of small jets from
recently formed bipole pairs beside the trailing spot of active region 11991,
which occurred on 2014 March 5 from 15:02:21 UT to 17:04:07 UT. There were
collimated outflows with bright roots in the SJI 1400 {\AA} (transition region)
and 2796 {\AA} (upper chromosphere) that were mostly not seen in AIA 304 {\AA}
(transition region) and AIA 171 \AA\ (lower corona) images. The Si IV spectra
show strong blue-wing but no red-wing enhancements in the line profiles of the
ejecta for all recurrent jets indicating outward flows without twists. We see
two types of Mg II line profiles produced by the jets spires: reversed and
non-reversed. Mg II lines remain optically thick but turn into optically thin
in the highly Doppler shifted wings.The energy flux contained in each recurrent
jet is estimated using a velocity differential emission measure technique which
measures the emitting power of the plasma as a function of line-of-sight
velocity. We found that all the recurrent jets release similar energy (10
erg cm s ) toward the corona and the downward component is less
than 3\%.Comment: Accepted for publication in ApJ, 6 fiugre
A Lattice Boltzmann method for simulations of liquid-vapor thermal flows
We present a novel lattice Boltzmann method that has a capability of
simulating thermodynamic multiphase flows. This approach is fully
thermodynamically consistent at the macroscopic level. Using this new method, a
liquid-vapor boiling process, including liquid-vapor formation and coalescence
together with a full coupling of temperature, is simulated for the first time.Comment: one gzipped tar file, 19 pages, 4 figure
Photon radiation effects on CdS/CuInSe2 thin film solar cells
The unknown tolerance of CuInSe2 cells to proton irradiation, was tested. It was shown that CdS/CuInSe2 solar cells have an inherent tolerance to irradiation by 1 MeV electrons up to at least 2 x 10 to the 16th power electrons/sq cm. Eleven, unencapsulated, 1 sq cm cells deposited on alumina substrates were irradiated with 1 MeV protons at normal incidence. The cells were exposed to six fluences ranging from 2.5 x 10 to the 10th power protons/sq cm to 5.0 x 10 to the 13th power protons/sq cm. After each interval of exposure, the cells were removed from the radiation chamber to undergo current/voltage characterization. It is shown that none of the cells electrical characteristics exhibited any degradation up to and including a fluence of 1 x 10 to the 11th power protons/sq cm. At fluences greater than this, the damage to the CuInSe2 cells V sub oc and fill factor (FF) was more severe than that exhibited by the Isc. The CuInSe2 cells proved to be approximately a factor of 50 more resistant to 1 MeV proton irradiation than silicon or gallium arsenide cells. Annealing of a CuInSe2 cell at 225 deg C for 6 minutes restored it to within 95% of its initial efficiency
Active regulator of SIRT1 is required for cancer cell survival but not for SIRT1 activity
The NAD+-dependent deacetylase SIRT1 is involved in diverse cellular processes, and has also been linked with multiple disease states. Among these, SIRT1 expression negatively correlates with cancer survival in both laboratory and clinical studies. Active regulator of SIRT1 (AROS) was the first reported post-transcriptional regulator of SIRT1 activity, enhancing SIRT1-mediated deacetylation and downregulation of the SIRT1 target p53. However, little is known regarding the role of AROS in regulation of SIRT1 during disease. Here, we report the cellular and molecular effects of RNAi-mediated AROS suppression, comparing this with the role of SIRT1 in a panel of human cell lines of both cancerous and non-cancerous origins. Unexpectedly, AROS is found to vary in its modulation of p53 acetylation according to cell context. AROS suppresses p53 acetylation only following the application of cell damaging stress, whereas SIRT1 suppresses p53 under all conditions analysed. This supplements the original characterization of AROS but indicates that SIRT1 activity can persist following suppression of AROS. We also demonstrate that knockdown of AROS induces apoptosis in three cancer cell lines, independent of p53 activation. Importantly, AROS is not required for the viability of three non-cancer cell lines indicating a putative role for AROS in specifically promoting cancer cell survival
BGRID: A block-structured grid generation code for wing sections
The operation of the BGRID computer program is described for generating block-structured grids. Examples are provided to illustrate the code input and output. The application of a fully implicit AF (approximation factorization)-based computer code, called TWINGB (Transonic WING), for solving the 3D transonic full potential equation in conservation form on block-structured grids is also discussed
- âŚ