39 research outputs found

    The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

    Get PDF
    The objective of this study is to use a new style of waved flow channel instead of the plane surface channel in the proton exchange membrane fuel cell (PEMFC). The velocity, concentration, and electrical performance with the waved flow channel in PEMFC are investigated by numerical simulations. The results show that the waved channel arises when the transport benefits through the porous layer and improves the performance of the PEMFC. This is because the waved flow channel enhances the forced convection and causes the more reactant gas flow into the gas diffusion layer (GDL). The performance which was compared to a conventional straight gas flow channel increases significantly with the small gap size when it is smaller than 0.5 in the waved flow channel. The performance is decreased at the high and low velocities as the force convection mechanism is weakened and the reactant gas supply is insufficient. The pressure drop is increased as the gap size becomes smaller, and the wave number decreases. (gap size) δ > 0.3 has a reasonable pressure drop. Consequently, compared to a conventional PEMFC, the waved flow channel improves approximately 30% of power density

    Stability Analysis of Thin Power-Law Fluid Film Flowing down a Moving Plane in a Vertical Direction

    No full text
    This paper analyses the stability of thin power-law fluid flowing down a moving plane in a vertical direction by using the long-wave perturbation method. Linear and nonlinear stability are discussed. The linear stable region increases as the downward speed increases and the power-law index increases. More accurate results are obtained on the coefficients of the nonlinear generalized kinematic equation in the power-law part. The regions of sub-critical instability and absolute stability are expanded when the downward movement of plane increases, or the power-law index increases, and meanwhile the parts of supercritical stability and explosive supercritical instability are compressed. By substituting the power-law index and moving speed into the generalized nonlinear kinematic equation of the power-law film on the free surface, the results can be applied to estimate the stability of the thin film flow in the field of engineering

    A Study on Sputtering of Copper Seed Layer for Interconnect Metallization via Molecular Dynamics Simulation

    No full text
    Interconnects are significant elements in integrated circuits (ICs), as they connect individual components of the circuit into a functioning whole. To form a void-free interconnect, a thin and uniform copper seed layer must be deposited as a basis for electroplating. In this paper, process parameters of sputtering including incident energy, incident angle, substrate temperature, and deposition rate were studied to form a uniform copper seed layer. Different liner/barrier materials and properties including crystal planes were also studied to enhance the quality of the copper seed layer. The study was carried out by molecular dynamics simulation. It revealed that increasing the incident energy and substrate temperature during the sputtering process increases their diffusivity but results in poorer uniformity and larger alloy percentage. By decreasing the deposition rate, the Ostwald ripening effect becomes dominant and increases the uniformity. An adequate incident angle could increase necking and uniformity. Among the sputtering process parameters and material properties discussed in this study, surface diffusion barrier energy of different crystal planes is the most decisive factor, which leads to good uniformity
    corecore