6,187 research outputs found
Experiments with repeating weighted boosting search for optimization in signal processing applications
Recommended from our members
Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization
The paper presents an efficient construction algorithm for obtaining sparse kernel density estimates based on a regression approach that directly optimizes model generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. A local regularization method is incorporated naturally into the density construction process to further enforce sparsity. An additional advantage of the proposed algorithm is that it is fully automatic and the user is not required to specify any criterion to terminate the density construction procedure. This is in contrast to an existing state-of-art kernel density estimation method using the support vector machine (SVM), where the user is required to specify some critical algorithm parameter. Several examples are included to demonstrate the ability of the proposed algorithm to effectively construct a very sparse kernel density estimate with comparable accuracy to that of the full sample optimized Parzen window density estimate. Our experimental results also demonstrate that the proposed algorithm compares favourably with the SVM method, in terms of both test accuracy and sparsity, for constructing kernel density estimates
Sparse support vector regression based on orthogonal forward selection for the generalised kernel model
The Coupled Cluster Method in Hamiltonian Lattice Field Theory
The coupled cluster or exp S form of the eigenvalue problem for lattice
Hamiltonian QCD (without quarks) is investigated. A new construction
prescription is given for the calculation of the relevant coupled cluster
matrix elements with respect to an orthogonal and independent loop space basis.
The method avoids the explicit introduction of gauge group coupling
coefficients by mapping the eigenvalue problem onto a suitable set of character
functions, which allows a simplified procedure. Using appropriate group
theoretical methods, we show that it is possible to set up the eigenvalue
problem for eigenstates having arbitrary lattice momentum and lattice angular
momentum.Comment: LaTeX, no figur
Visualising the structure of document search results: A comparison of graph theoretic approaches
This is the post-print of the article - Copyright @ 2010 Sage PublicationsPrevious work has shown that distance-similarity visualisation or ‘spatialisation’ can provide a potentially useful context in which to browse the results of a query search, enabling the user to adopt a simple local foraging or ‘cluster growing’ strategy to navigate through the retrieved document set. However, faithfully mapping feature-space models to visual space can be problematic owing to their inherent high dimensionality and non-linearity. Conventional linear approaches to dimension reduction tend to fail at this kind of task, sacrificing local structural in order to preserve a globally optimal mapping. In this paper the clustering performance of a recently proposed algorithm called isometric feature mapping (Isomap), which deals with non-linearity by transforming dissimilarities into geodesic distances, is compared to that of non-metric multidimensional scaling (MDS). Various graph pruning methods, for geodesic distance estimation, are also compared. Results show that Isomap is significantly better at preserving local structural detail than MDS, suggesting it is better suited to cluster growing and other semantic navigation tasks. Moreover, it is shown that applying a minimum-cost graph pruning criterion can provide a parameter-free alternative to the traditional K-neighbour method, resulting in spatial clustering that is equivalent to or better than that achieved using an optimal-K criterion
On linear coupling of acoustic and cyclotron waves in plasma flows
It is found that in magnetized electrostatic plasma flows the velocity shear
couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable
conditions, to their efficient reciprocal transformations. It is shown that in
a two-dimensional setup this coupling has a remarkable feature: it is governed
by equations that are exactly similar to the ones describing coupling of sound
waves with internal gravity waves [Rogava & Mahajan: Phys. Rev. E vol.55, 1185
(1997)] in neutral fluid flows. Using another noteworthy quantum mechanical
analogy we calculate transformation coefficients and give fully analytic,
quantitative description of the coupling efficiency for flows with low shearing
rates.Comment: 5 pages, no figures. Submitted to "Physics of Plasmas
Relativistic mean-field study of neutron-rich nuclei
A relativistic mean-field model is used to study the ground-state properties
of neutron-rich nuclei. Nonlinear isoscalar-isovector terms, unconstrained by
present day phenomenology, are added to the model Lagrangian in order to modify
the poorly known density dependence of the symmetry energy. These new terms
soften the symmetry energy and reshape the theoretical neutron drip line
without compromising the agreement with existing ground-state information. A
strong correlation between the neutron radius of 208Pb and the binding energy
of valence orbitals is found: the smaller the neutron radius of 208Pb, the
weaker the binding energy of the last occupied neutron orbital. Thus, models
with the softest symmetry energy are the first ones to drip neutrons. Further,
in anticipation of the upcoming one-percent measurement of the neutron radius
of 208Pb at the Thomas Jefferson Laboratory, a close relationship between the
neutron radius of 208Pb and neutron radii of elements of relevance to atomic
parity-violating experiments is established.Comment: 14 pages, 5 figure
Results of the MRI substudy of the intravenous magnesium efficacy in stroke trial
<p><b>Background and Purpose:</b>Although magnesium is neuroprotective in animal stroke models, no clinical benefit was confirmed in the Intravenous Magnesium Efficacy in Stroke (IMAGES) trial of acute stroke patients. The Magnetic
Resonance in IMAGES (MR IMAGES) substudy investigated the effects of magnesium on the imaging surrogate
outcome of infarct growth.</p>
<p><b>Methods:</b> IMAGES trial patients in participating centers were randomized to receive either intravenous magnesium or placebo within 12 hours of stroke onset. Infarct growth was defined as volume difference between baseline diffusion-weighted imaging and day 90 fluid-attenuated inversion recovery image lesions. Patients who died were imputed the largest infarct growth observed.</p>
<p><b>Results:</b> Among the 90 patients included in the primary analysis, there was no difference in infarct growth (median absolute growth, P=0.639; median percentage growth, P=0.616; proportion with any growth, P=0.212) between the
46 treated with magnesium and 44 with placebo. Infarct growth correlated with NIHSS score change from baseline to
day 90. There was a trend showing baseline serum glucose correlated with infarct growth with magnesium treatment,
but not in the placebo group. The mismatch frequency was reduced from 73% to 47% by increasing the mismatch
threshold from >20% to >100% of core volume.</p>
<p><b>Conclusions:</b> Infarct growth, confirmed here as a surrogate for clinical progression, was similar between magnesium and placebo treatment, paralleling the main IMAGES trial clinical outcomes. Glucose was a covariate for infarct growth with magnesium treatment. A more stringent mismatch threshold to define penumbra more appropriately would have
excluded half of the patients in this 12-hour time window stroke study.</p>
The Coupled Cluster Method in Hamiltonian Lattice Field Theory: SU(2) Glueballs
The glueball spectrum within the Hamiltonian formulation of lattice gauge
theory (without fermions) is calculated for the gauge group SU(2) and for two
spatial dimensions.
The Hilbert space of gauge-invariant functions of the gauge field is
generated by its parallel-transporters on closed paths along the links of the
spatial lattice. The coupled cluster method is used to determine the spectrum
of the Kogut-Susskind Hamiltonian in a truncated basis. The quality of the
description is studied by computing results from various truncations, lattice
regularisations and with an improved Hamiltonian.
We find consistency for the mass ratio predictions within a scaling region
where we obtain good agreement with standard lattice Monte Carlo results.Comment: 13 pages, 7 figure
Combined CI+MBPT calculations of energy levels and transition amplitudes in Be, Mg, Ca, and Sr
Configuration interaction (CI) calculations in atoms with two valence
electrons, carried out in the V(N-2) Hartree-Fock potential of the core, are
corrected for core-valence interactions using many-body perturbation theory
(MBPT). Two variants of the mixed CI+MBPT theory are described and applied to
obtain energy levels and transition amplitudes for Be, Mg, Ca, and Sr
- …
