44 research outputs found
Physicochemical Properties of Glycine-Based Ionic Liquid [QuatGly-OEt][EtOSO3] (2-Ethoxy-1-ethyl-1,1-dimethyl-2-oxoethanaminium ethyl sulfate) and Its Binary Mixtures with Poly(ethylene glycol) (Mw = 200) at Various Temperatures
This work includes specific basic characterization of synthesized glycine-based Ionic Liquid (IL) [QuatGly-OEt][EtOSO3] by NMR, elementary analysis and water content. Thermophysical properties such as density, ρ, viscosity, η, refractive index, n, and conductivity, κ, for the binary mixture of [QuatGly-OEt][EtOSO3] with poly(ethylene glycol) (PEG) [Mw = 200] are measured over the whole composition range. The temperature dependence of density and dynamic viscosity for neat [QuatGly-OEt][EtOSO3] and its binary mixture can be described by an empirical polynomial equation and by the Vogel-Tammann-Fucher (VTF) equation, respectively. The thermal expansion coefficient of the ILs is ascertained using the experimental density results, and the excess volume expansivity is evaluated. The negative values of excess molar volume for the mixture indicate the ion-dipole interactions and packing between IL and PEG oligomer. The results of binary excess property (VmE ) and deviations (Δη, Δxn, ΔΨn, ΔxR, and ΔΨR) are discussed in terms of molecular interactions and molecular structures in the binary mixture
Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan
AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities
Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid
Proton exchange membranes (PEMs) are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs) were doped by protic ionic liquid (PIL) to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxy)phenyl]propane (BAPP), sulfonated diamine, 4,4\u27-diamino diphenyl ether-2,2\u27-disulfonic acid (ODADS) and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf]), was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL) composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3\u27,4,4\u27-diphenyl sulfone tetracarboxylic dianhydride (DSDA) was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs
Age can be a Problem: Clostridium difficile and Cytomegalovirus Colitis Coinfection in an Immunocompetent 90-year-old Patient
Clostridium difficile colitis and cytomegalovirus colitis coinfection has been documented in immunocompromised patients. However, this kind of coinfection has rarely been reported in immunocompetent patients. We present a 90-year-old, critically ill, immunocompetent patient, who had a C. difficile and cytomegalovirus colitis coinfection. Although the common risk factors of both types of colitis are well known, clinical physicians still need to be alert to this coinfection because severe complications of CMV colitis have been reported previously. Physicians should be more aggressive in the management of elderly immunocompetent patients with refractory symptoms of colitis
SARAS-Net: Scale and Relation Aware Siamese Network for Change Detection
Change detection (CD) aims to find the difference between two images at different times and output a change map to represent whether the region has changed or not. To achieve a better result in generating the change map, many State-of-The-Art (SoTA) methods design a deep learning model that has a powerful discriminative ability. However, these methods still get lower performance because they ignore spatial information and scaling changes between objects, giving rise to blurry boundaries. In addition to these, they also neglect the interactive information of two different images. To alleviate these problems, we propose our network, the Scale and Relation-Aware Siamese Network (SARAS-Net) to deal with this issue. In this paper, three modules are proposed that include relation-aware, scale-aware, and cross-transformer to tackle the problem of scene change detection more effectively. To verify our model, we tested three public datasets, including LEVIR-CD, WHU-CD, and DSFIN, and obtained SoTA accuracy. Our code is available at https://github.com/f64051041/SARAS-Net
Novel inspection of sugar residue and origin in honey based on the 13C/12C isotopic ratio and protein content
Regarding the honey industry, market prices are strongly affected by the origin and composition of products. In particular, the adulteration of honey can be divided into cases of honey being mixed with artificial syrup, the different origin of the adulteration and the presence of cane sugar residue. Unfortunately, recent studies mentioned that most honey is mixed with artificial syrups. Thus, determining such unnaturally present sugar is necessary to maintain the trust of the consuming populations. To investigate the possibility of syrup augmentation, this study first clarifies two points of great importance. First, long-term feeding of cane sugar to honey bee colonies in winter and the continuous harvest of honey were investigated to evaluate the C4 sugar ratio in spring through inspection of the 13C/12C isotopic ratio. As the results indicated, C4 sugar was detected as “sugar residue” in honey samples when the honey bee colonies were fed with cane sugar in winter and when the honey was collected in the first and second harvests in March. As indicated from the samples of 89 Taiwanese longan honeys, 54 Thai longan honeys, and 20 Taiwanese non-longan honeys for analysis, such “sugar residues” were in 40% (8/20) of the Taiwanese non-longan honeys, 15% (3/20) of 2017 Taiwanese longan honeys and 20% (4/20) of 2017 Thai longan honeys; these samples were classified as adulterated honey (C4% > 7). Second, as revealed in the honeys' protein contents, statistically significant differences were found between Taiwanese (>1.00 mg/g) and Thai longan honeys (<1.00 mg/g). Apparently, this significant difference could be used to classify the difference in origins of longan honeys. This novel inspection of “sugar residue” and “origin” in honey could represent the first attempt for a protocol to guarantee both the quality and quantity assurance of honey in the marketplace. Keywords: Honey adulteration, Protein content, Sugar residue, Stable carbon isotope ratio analysis (SCIRA
Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity
A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy) benzene [pBAB]. Sulfonated polyimides (SPIs) were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid) benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs) made of novel SPIs and a protic ionic liquid (PIL) 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene) dianiline (9FDA) as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA) as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells
Mono- and dinuclear copper complexes coordinated on NNO-tridentate Schiff-base derivatives for copolymerization of cyclohexene oxide and cyclic anhydrides
A series of bimetallic penta-coordinated copper complexes [Ln2Cu2(OAc)2] (1, 3–7), a mononuclear tetra-coordinated copper complex [LnCu(OAc)] (8 and 9), and a penta-coordinated copper complex [L2Cu(OAc)(H2O)] (10) were prepared by the reaction of Cu(OAc)2·H2O with a variety of NNO-tridentate Schiff-base ligands (L1-H–L9-H) in refluxing 95% ethanol, respectively. However, a dinuclear copper complex [(L2)2Cu2(OAc)2] (2) can be obtained from the treatment of L2-H with a stoichiometric amount of anhydrous Cu(OAc)2 in refluxing absolute EtOH under a dry nitrogen atmosphere. All of these copper complexes are active for the alternating copolymerization of cyclohexene oxide and cyclic anhydride, affording polyesters with moderate polydispersity. In particular, dinuclear copper complexes 1 and 2 performed satisfactorily to produce polyesters with controllable molecular weights and high ester linkages. This is the first example of well-defined copper acetate catalysts active for the copolymerization of cyclohexene oxide-phthalic anhydride or cyclohexene oxide-succinic anhydride which may be advantageous in terms of obviating the use of co-catalysts and low cost as well as an effective copolymerization for the formation of biodegradable polyesters in a controlled fashion