69 research outputs found
Recommended from our members
CEACAM1 dampens antitumor immunity by down-regulating NKG2D ligand expression on tumor cells
By retaining NKG2D ligands within tumor cells, carcinoembryonic antigenβrelated cell adhesion molecule 1 (CEACAM1) facilitates tumor cell escape from NK cellβmediated cytolysis in vitro and in vivo
Combined deletion of Xrcc4 and Trp53 in mouse germinal center B cells leads to novel B cell lymphomas with clonal heterogeneity
Abstract Background Activated B lymphocytes harbor programmed DNA double-strand breaks (DSBs) initiated by activation-induced deaminase (AID) and repaired by non-homologous end-joining (NHEJ). While it has been proposed that these DSBs during secondary antibody gene diversification are the primary source of chromosomal translocations in germinal center (GC)-derived B cell lymphomas, this point has not been directly addressed due to the lack of proper mouse models. Methods In the current study, we establish a unique mouse model by specifically deleting a NHEJ gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in GC B cells, which results in the spontaneous development of B cell lymphomas that possess features of GC B cells. Results We show that these NHEJ deficient lymphomas harbor translocations frequently targeting immunoglobulin (Ig) loci. Furthermore, we found that Ig translocations were associated with distinct mechanisms, probably caused by AID- or RAG-induced DSBs. Intriguingly, the AID-associated Ig loci translocations target either c-myc or Pvt-1 locus whereas the partners of RAG-associated Ig translocations scattered randomly in the genome. Lastly, these NHEJ deficient lymphomas harbor complicated genomes including segmental translocations and exhibit a high level of ongoing DNA damage and clonal heterogeneity. Conclusions We propose that combined NHEJ and p53 defects may serve as an underlying mechanism for a high level of genomic complexity and clonal heterogeneity in cancers
Chemotherapy-induced differential cell cycle arrest in B-cell lymphomas affects their sensitivity to Wee1 inhibition
Chemotherapeutic agents, e.g., cytarabine and doxorubicin, cause DNA damage. However, it remains unknown whether such agents differentially regulate cell cycle arrest in distinct types of B-cell lymphomas, and whether this phenotype can be exploited for developing new therapies. We treated various types of B cells, including primary and B lymphoma cells, with cytarabine or doxorubicin, and determined DNA damage responses, cell cycle regulation and sensitivity to a Wee1 inhibitor. We found that cyclin A2/B1 upregulation appears to be an intrinsic programmed response to DNA damage; however, different types of B cells arrest in distinct phases of the cell cycle. The Wee1 inhibitor significantly enhanced the apoptosis of G2 phase-arrested B-cell lymphomas by inducing premature entry into mitosis and mitotic catastrophe, whereas it did not affect G1/S-phase-arrested lymphomas. Cytarabine-induced G1-arrest can be converted to G2-arrest by doxorubicin treatment in certain B-cell lymphomas, which correlates with newly acquired sensitivity to the Wee1 inhibitor. Consequently, the Wee1 inhibitor together with cytarabine or doxorubicin inhibited tumor growth in vitro and in vivo more effectively, providing a potential new therapy for treating B-cell lymphomas. We propose that the differential cell cycle arrest can be exploited to enhance the chemosensitivity of B-cell lymphomas
Historical Developments of BHR Humanoid Robots
Humanoid robots can achieve increasingly complex functions and adapt to more complex environments. To boost the development of humanoid robot technology, a team at Beijing Institute of Technology initiated the research on humanoid robots from 2000. Their research primarily focuses on stable walking, whole-body complex motion, human-robot interaction, and multimodal motion of humanoid robots. Thus far, the team has developed 6 generations of humanoid robots. The latest humanoid robot, BHR-6P, can achieve multi-mode motions (for example, walk, jump, fall protection, crawl and roll), which will significantly improve the ability of robot to adapt to the environment. This paper presented the historical evolution of BHR humanoid robots and outlined their functions and features
Host-specific differences in top-expanded TCR clonotypes correlate with divergent outcomes of anti-PD-L1 treatment in responders versus non-responders
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment; however, the responses to ICI treatment are highly variable in different individuals and the underlying mechanisms remain poorly understood. Here, we employed a mouse squamous cell carcinoma (SCC) model where tumor-bearing recipients diverged into responders (R) versus non-responders (NR) upon anti-PD-L1 treatment. We performed in-depth TCRΞ² sequencing with immunoSEQ platform to delineate the differences in CD8 tumor-infiltrating lymphocytes (TILs). We found that R and NR CD8 TILs both exhibited evidence of clonal expansion, suggesting activation regardless of response status. We detected no differences in clonal expansion or clonal diversity indexes between R vs. NR. However, the top expanded (>1%) TCRΞ² clonotypes appeared to be mutually exclusive between R and NR CD8 TILs, showing a preferential expansion of distinct TCRΞ² clonotypes in response to the same SCC tumor in R vs. NR. Notably, the mutual exclusivity of TCR clonotypes in R vs. NR was only observed when top TCRΞ² clonotypes were counted, because such top-expanded clonotypes are present in the opposite outcome group at a much lower frequency. Many TCRΞ² sequences were detected in only one recipient at a high frequency, implicating highly individualized anti-tumor immune responses. We conclude that differences in the clonal frequency of top TCR clonotypes between R and NR CD8 TILs may be one of the factors underlying differential anti-PD-L1 responses. This notion may offer a novel explanation for variable ICI responses in different individuals, which may substantially impact the development of new strategies for personalized cancer immunotherapy
Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15
IL-15 and NKG2D promote autoimmunity and celiac disease by arming cytotoxic T lymphocytes (CTLs) to cause tissue destruction. However, the downstream signaling events underlying these functional properties remain unclear. Here, we identify cytosolic phospholipase A2 (cPLA2) as a central molecule in NKG2D-mediated cytolysis in CTLs. Furthermore, we report that NKG2D induces, upon recognition of MIC+ target cells, the release of arachidonic acid (AA) by CTLs to promote tissue inflammation in association with target killing. Interestingly, IL-15, which licenses NKG2D-mediated lymphokine killer activity in CTLs, cooperates with NKG2D to induce cPLA2 activation and AA release. Finally, cPLA2 activation in intraepithelial CTLs of celiac patients provides an in vivo pathophysiological dimension to cPLA2 activation in CTLs. These results reveal an unrecognized link between NKG2D and tissue inflammation, which may underlie the emerging role of NKG2D in various immunopathological conditions and define new therapeutic targets
The Short Isoform of the CEACAM1 Receptor in Intestinal T Cells Regulates Mucosal Immunity and Homeostasis via Tfh Cell Induction
Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens
- β¦