54 research outputs found

    EMP-SSL: Towards Self-Supervised Learning in One Training Epoch

    Full text link
    Recently, self-supervised learning (SSL) has achieved tremendous success in learning image representation. Despite the empirical success, most self-supervised learning methods are rather "inefficient" learners, typically taking hundreds of training epochs to fully converge. In this work, we show that the key towards efficient self-supervised learning is to increase the number of crops from each image instance. Leveraging one of the state-of-the-art SSL method, we introduce a simplistic form of self-supervised learning method called Extreme-Multi-Patch Self-Supervised-Learning (EMP-SSL) that does not rely on many heuristic techniques for SSL such as weight sharing between the branches, feature-wise normalization, output quantization, and stop gradient, etc, and reduces the training epochs by two orders of magnitude. We show that the proposed method is able to converge to 85.1% on CIFAR-10, 58.5% on CIFAR-100, 38.1% on Tiny ImageNet and 58.5% on ImageNet-100 in just one epoch. Furthermore, the proposed method achieves 91.5% on CIFAR-10, 70.1% on CIFAR-100, 51.5% on Tiny ImageNet and 78.9% on ImageNet-100 with linear probing in less than ten training epochs. In addition, we show that EMP-SSL shows significantly better transferability to out-of-domain datasets compared to baseline SSL methods. We will release the code in https://github.com/tsb0601/EMP-SSL

    Variance-Covariance Regularization Improves Representation Learning

    Full text link
    Transfer learning has emerged as a key approach in the machine learning domain, enabling the application of knowledge derived from one domain to improve performance on subsequent tasks. Given the often limited information about these subsequent tasks, a strong transfer learning approach calls for the model to capture a diverse range of features during the initial pretraining stage. However, recent research suggests that, without sufficient regularization, the network tends to concentrate on features that primarily reduce the pretraining loss function. This tendency can result in inadequate feature learning and impaired generalization capability for target tasks. To address this issue, we propose Variance-Covariance Regularization (VCR), a regularization technique aimed at fostering diversity in the learned network features. Drawing inspiration from recent advancements in the self-supervised learning approach, our approach promotes learned representations that exhibit high variance and minimal covariance, thus preventing the network from focusing solely on loss-reducing features. We empirically validate the efficacy of our method through comprehensive experiments coupled with in-depth analytical studies on the learned representations. In addition, we develop an efficient implementation strategy that assures minimal computational overhead associated with our method. Our results indicate that VCR is a powerful and efficient method for enhancing transfer learning performance for both supervised learning and self-supervised learning, opening new possibilities for future research in this domain.Comment: 16 pages, 2 figure

    Bag of Image Patch Embedding Behind the Success of Self-Supervised Learning

    Full text link
    Self-supervised learning (SSL) has recently achieved tremendous empirical advancements in learning image representation. However, our understanding of the principle behind learning such a representation is still limited. This work shows that joint-embedding SSL approaches primarily learn a representation of image patches, which reflects their co-occurrence. Such a connection to co-occurrence modeling can be established formally, and it supplements the prevailing invariance perspective. We empirically show that learning a representation for fixed-scale patches and aggregating local patch representations as the image representation achieves similar or even better results than the baseline methods. We denote this process as BagSSL. Even with 32x32 patch representation, BagSSL achieves 62% top-1 linear probing accuracy on ImageNet. On the other hand, with a multi-scale pretrained model, we show that the whole image embedding is approximately the average of local patch embeddings. While the SSL representation is relatively invariant at the global scale, we show that locality is preserved when we zoom into local patch-level representation. Further, we show that patch representation aggregation can improve various SOTA baseline methods by a large margin. The patch representation is considerably easier to understand, and this work makes a step to demystify self-supervised representation learning

    Minimalistic Unsupervised Learning with the Sparse Manifold Transform

    Full text link
    We describe a minimalistic and interpretable method for unsupervised learning, without resorting to data augmentation, hyperparameter tuning, or other engineering designs, that achieves performance close to the SOTA SSL methods. Our approach leverages the sparse manifold transform, which unifies sparse coding, manifold learning, and slow feature analysis. With a one-layer deterministic sparse manifold transform, one can achieve 99.3% KNN top-1 accuracy on MNIST, 81.1% KNN top-1 accuracy on CIFAR-10 and 53.2% on CIFAR-100. With a simple gray-scale augmentation, the model gets 83.2% KNN top-1 accuracy on CIFAR-10 and 57% on CIFAR-100. These results significantly close the gap between simplistic ``white-box'' methods and the SOTA methods. Additionally, we provide visualization to explain how an unsupervised representation transform is formed. The proposed method is closely connected to latent-embedding self-supervised methods and can be treated as the simplest form of VICReg. Though there remains a small performance gap between our simple constructive model and SOTA methods, the evidence points to this as a promising direction for achieving a principled and white-box approach to unsupervised learning
    • …
    corecore