27,171 research outputs found

    Space Shuffle: A Scalable, Flexible, and High-Bandwidth Data Center Network

    Full text link
    Data center applications require the network to be scalable and bandwidth-rich. Current data center network architectures often use rigid topologies to increase network bandwidth. A major limitation is that they can hardly support incremental network growth. Recent work proposes to use random interconnects to provide growth flexibility. However routing on a random topology suffers from control and data plane scalability problems, because routing decisions require global information and forwarding state cannot be aggregated. In this paper we design a novel flexible data center network architecture, Space Shuffle (S2), which applies greedy routing on multiple ring spaces to achieve high-throughput, scalability, and flexibility. The proposed greedy routing protocol of S2 effectively exploits the path diversity of densely connected topologies and enables key-based routing. Extensive experimental studies show that S2 provides high bisectional bandwidth and throughput, near-optimal routing path lengths, extremely small forwarding state, fairness among concurrent data flows, and resiliency to network failures

    Distributed Collaborative Monitoring in Software Defined Networks

    Full text link
    We propose a Distributed and Collaborative Monitoring system, DCM, with the following properties. First, DCM allow switches to collaboratively achieve flow monitoring tasks and balance measurement load. Second, DCM is able to perform per-flow monitoring, by which different groups of flows are monitored using different actions. Third, DCM is a memory-efficient solution for switch data plane and guarantees system scalability. DCM uses a novel two-stage Bloom filters to represent monitoring rules using small memory space. It utilizes the centralized SDN control to install, update, and reconstruct the two-stage Bloom filters in the switch data plane. We study how DCM performs two representative monitoring tasks, namely flow size counting and packet sampling, and evaluate its performance. Experiments using real data center and ISP traffic data on real network topologies show that DCM achieves highest measurement accuracy among existing solutions given the same memory budget of switches

    Kinematic Basis of Emergent Energetics of Complex Dynamics

    Full text link
    Stochastic kinematic description of a complex dynamics is shown to dictate an energetic and thermodynamic structure. An energy function φ(x)\varphi(x) emerges as the limit of the generalized, nonequilibrium free energy of a Markovian dynamics with vanishing fluctuations. In terms of the ∇φ\nabla\varphi and its orthogonal field γ(x)⊥∇φ\gamma(x)\perp\nabla\varphi, a general vector field b(x)b(x) can be decomposed into −D(x)∇φ+γ-D(x)\nabla\varphi+\gamma, where ∇⋅(ω(x)γ(x))=\nabla\cdot\big(\omega(x)\gamma(x)\big)= −∇ωD(x)∇φ-\nabla\omega D(x)\nabla\varphi. The matrix D(x)D(x) and scalar ω(x)\omega(x), two additional characteristics to the b(x)b(x) alone, represent the local geometry and density of states intrinsic to the statistical motion in the state space at xx. φ(x)\varphi(x) and ω(x)\omega(x) are interpreted as the emergent energy and degeneracy of the motion, with an energy balance equation dφ(x(t))/dt=γD−1γ−bD−1bd\varphi(x(t))/dt=\gamma D^{-1}\gamma-bD^{-1}b, reflecting the geometrical ∥D∇φ∥2+∥γ∥2=∥b∥2\|D\nabla\varphi\|^2+\|\gamma\|^2=\|b\|^2. The partition function employed in statistical mechanics and J. W. Gibbs' method of ensemble change naturally arise; a fluctuation-dissipation theorem is established via the two leading-order asymptotics of entropy production as ϵ→0\epsilon\to 0. The present theory provides a mathematical basis for P. W. Anderson's emergent behavior in the hierarchical structure of complexity science.Comment: 7 page

    A Comprehensive Four-Quark Interpretation of D_s(2317), D_s(2457) and D_s(2632)

    Full text link
    The recently observed new member of the charm-strange family D_s(2632) which has a surprisingly narrow width is challenging our theory. D_s(2317) and D_s(2457) which were observed earlier have similar behaviors and receive various theoretical explanations. Some authors use the heavy hadron chiral effective theory to evaluate heavy-light quark systems and obtain a reasonable evaluation on the masses of D_s(2317) and D_s(2457). An alternative picture is to interpret them as four-quark or molecular states. In this work, we are following the later and propose a unitive description for all the three new members D_s(2632), D_s(2317) and D_s(2457) and at least, so far our picture is consistent with the data.Comment: 6 page
    • …
    corecore