71 research outputs found

    Oil Displacement Efficiency and Performance Evaluation of Composite Ion Profile Control Agents Prepared with Oilfield Sewage

    Get PDF
    According to the demand of development in Daqing oil field, in order to reduce sewage discharge and save clean water, most of the polymer injection stations have switched to polymer solution diluted by sewage. Considering the present development trend of the oil field and requirement in terms of cost control, we should further deepen the research of formulas for all kinds of chemical sewage. Performance evaluating experiments on the long-term stability, the anti-shear property, the compatibility with initial rock debris and alkali ternary combination system of profile control agents, as well as the test for the efficiency of core displacement physical simulation of profile control and oil displacement evaluation are carried in this paper, which are intended for the composite ion profile control system that are prepared with oilfield sewage. In this paper, the long-term stable composite ion profile control agents formular prepared with oilfield sewage have been determined; the profile control effect of composite ion profile control agents prepared with sewage for cores with different permeability have been presented, and the rules of composite ion profile control agents prepared with sewage on oil displacement effect at different injection time and injection rate have been studied.Research shows that the long-term heat stability, anti-shear property, compatibility with initial rock debris and alkali ternary combination system of composite ion profile control agents prepared with sewage are well, as well as the core plugging effect and anti-corrosion performance. Oil displacement results are obviously different when profile control agents are injected at different time. Injecting profile control agents before polymer flooding works best, medium term secondly, and late stage thirdly. At the same time, the enhanced recovery rate increases with increased profile control agents injection. While the increase of enhanced oil recovery rate becomes slower when the profile control agents injection reach 0.1 PV. After profile control measures are taken, the average injection pressure and starting pressure has risen respectively by 2.7 Mpa and 2.6 Mpa; the water absorbing capacity of high permeable formation has been under control; the water absorbing capacity of low permeable formation has been strengthened; the absorbing water thickness of all wells have been increased; the breakthrough of flooded fluid in certain direction have been solved, which leads to more even polymer forward.Key words: Oil displacement effect evaluation; Performance evaluation; Composite ion profile control agents; Oil produced water preparing polymer

    Exploring the color inconstancy of prints

    Get PDF
    The color inconstancy of prints is related to the ink spectral properties and the lookup table for multiink printing systems. In this paper, color inconstancy was investigated for several ink-jet printers based on their ink set and the default lookup tables. A virtual model for each printer was created to determine the range of color inconstancy that a specific ink set could achieve. The color inconstancy performance of each default lookup table was evaluated by evaluating the color inconstancy of a printed test target. The optimum combinations of three- and four-chromatic inks were investigated to minimize the color inconstancy and keep a relative large color gamut simultaneously. The results showed that the color inconstancy can be decreased significantly without compromising the reproduction colorimetric accuracy. Moreover the color inconstancy can be improved by appropriate ink design

    Probing the Roles of Polymeric Separators in Lithium-Ion Battery Capacity Fade at Elevated Temperatures

    Get PDF
    The high temperature mechanical property of separators is very important for safety of lithium-ion batteries. However, the mechanical integrity of polymeric separators in lithium-ion batteries at elevated temperatures is still not well characterized. In this paper, the temperature dependent micro-scale morphology change of PP (polypropylene)-PE (polyethylene)-PP sandwiched separators (Celgard 2325) was studied by in-situ high temperature surface imaging using an atomic force microscope (AFM) coupled with power spectral density (PSD) analysis and digital image correlation (DIC) technique. Both PSD and DIC analysis results show that the PP phase significantly closes its pores by means of dilation of the nanofibrils surrounding the pores in the transverse direction and shrinkage in the machine direction, when cycled at 90◦C, even below the separator’s shutdown temperature (∼120◦C) and its own melting temperature (165◦C). This is presumably due to surface melting effect in nanostructures and should be size dependent–the surface melting temperature may decrease with the diameter of nanofibrils. Therefore, some pore closing might happen even at operating temperatures, it will lead to capacity fade that is undesired for battery performance

    Gut microbiota: a newly identified environmental factor in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that predominantly affects women of childbearing age and is characterized by the damage to multiple target organs. The pathogenesis of SLE is complex, and its etiology mainly involves genetic and environmental factors. At present, there is still a lack of effective means to cure SLE. In recent years, growing evidence has shown that gut microbiota, as an environmental factor, triggers autoimmunity through potential mechanisms including translocation and molecular mimicry, leads to immune dysregulation, and contributes to the development of SLE. Dietary intervention, drug therapy, probiotics supplement, fecal microbiome transplantation and other ways to modulate gut microbiota appear to be a potential treatment for SLE. In this review, the dysbiosis of gut microbiota in SLE, potential mechanisms linking gut microbiota and SLE, and immune dysregulation associated with gut microbiota in SLE are summarized

    Cardiovascular outcomes and safety of SGLT2 inhibitors in chronic kidney disease patients

    Get PDF
    BackgroundSodium–glucose co-transporter 2 (SGLT2) inhibitors provide cardiovascular protection for patients with heart failure (HF) and type 2 diabetes mellitus (T2DM). However, there is little evidence of their application in patients with chronic kidney disease (CKD). Furthermore, there are inconsistent results from studies on their uses. Therefore, to explore the cardiovascular protective effect of SGLT2 inhibitors in the CKD patient population, we conducted a systematic review and meta-analysis to evaluate the cardiovascular effectiveness and safety of SGLT2 inhibitors in this patient population.MethodWe searched the PubMed® (National Library of Medicine, Bethesda, MD, USA) and Web of Science™ (Clarivate™, Philadelphia, PA, USA) databases for randomized controlled trials (RCTs) of SGLT2 inhibitors in CKD patients and built the database starting in January 2023. In accordance with our inclusion and exclusion criteria, the literature was screened, the quality of the literature was evaluated, and the data were extracted. RevMan 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark) and Stata® 17.0 (StataCorp LP, College Station, TX, USA) were used for the statistical analyses. Hazard ratios (HRs), odds ratios (ORs), and corresponding 95% confidence intervals (CIs) were used for the analysis of the outcome indicators.ResultsThirteen RCTs were included. In CKD patients, SGLT2 inhibitors reduced the risk of cardiovascular death (CVD) or hospitalization for heart failure (HHF) by 28%, CVD by 16%. and HHF by 35%. They also reduced the risk of all-cause death by 14% without increasing the risk of serious adverse effects (SAEs) and urinary tract infections (UTIs). However, they increased the risk of reproductive tract infections (RTIs).ConclusionSGLT2 inhibitors have a cardiovascular protective effect on patients with CKD, which in turn can significantly reduce the risk of CVD, HHF, and all-cause death without increasing the risk of SAEs and UTIs but increasing the risk of RTIs

    An overview of the efficacy and signaling pathways activated by stem cell-derived extracellular vesicles in diabetic kidney disease

    Get PDF
    Diabetic kidney disease (DKD) is one of complications of diabetes mellitus with severe microvascular lesion and the most common cause of end-stage chronic kidney disease (ESRD). Controlling serum glucose remains the primary approach to preventing and slowing the progression of DKD. Despite considerable efforts to control diabetes, people with diabetes develop not only DKD but also ESRD. The pathogenesis of DKD is very complex, and current studies indicate that mesenchymal stromal cells (MSCs) regulate complex disease processes by promoting pro-regenerative mechanisms and inhibiting multiple pathogenic pathways. Extracellular vesicles (EVs) are products of MSCs. Current data indicate that MSC-EVs-based interventions not only protect renal cells, including renal tubular epithelial cells, podocytes and mesangial cells, but also improve renal function and reduce damage in diabetic animals. As an increasing number of clinical studies have confirmed, MSC-EVs may be an effective way to treat DKD. This review explores the potential efficacy and signaling pathways of MSC-EVs in the treatment of DKD

    Genome-Wide Characterization and Analysis of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Cinnamomum camphora ('Gantong 1')

    Get PDF
    Cinnamomum camphora is one of the most commonly used tree species in landscaping. Improving its ornamental traits, particularly bark and leaf colors, is one of the key breeding goals. The basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial in controlling anthocyanin biosynthesis in many plants. However, their role in C. camphora remains largely unknown. In this study, we identified 150 bHLH TFs (CcbHLHs) using natural mutant C. camphora 'Gantong 1', which has unusual bark and leaf colors. Phylogenetic analysis revealed that 150 CcbHLHs were divided into 26 subfamilies which shared similar gene structures and conserved motifs. According to the protein homology analysis, we identified four candidate CcbHLHs that were highly conserved compared to the TT8 protein in A. thaliana. These TFs are potentially involved in anthocyanin biosynthesis in C. camphora. RNA-seq analysis revealed specific expression patterns of CcbHLHs in different tissue types. Furthermore, we verified expression patterns of seven CcbHLHs (CcbHLH001, CcbHLH015, CcbHLH017, CcbHLH022, CcbHLH101, CcbHLH118, and CcbHLH134) in various tissue types at different growth stages using qRT-PCR. This study opens a new avenue for subsequent research on anthocyanin biosynthesis regulated by CcbHLH TFs in C. camphora

    Identification and Validation of Two Novel Prognostic lncRNAs in Kidney Renal Clear Cell Carcinoma

    Get PDF
    Background/Aims: Kidney renal clear cell carcinoma (KIRC) is one of the most fatal malignancies due to late diagnosis and poor treatment. To improve its prognosis, a screening for molecular biomarkers of KIRC is urgently needed. Long non-coding RNAs (lncRNAs) play important roles in tumorigenesis and prognosis of cancers. However, it is not clear whether lncRNAs can be used as molecular biomarkers in predicting the survival of KIRC patients. Methods: In this study, our aim was to identify lncRNAs/mRNAs signatures and their prognostic values in KIRC. The aberrant expression profile of mRNAs and lncRNAs in 529 KIRC tissues and 72 adjacent non-tumor pancreatic tissues were obtained from the Cancer Genome Atlas (TCGA). A weighted gene co-expression network analysis (WGCNA) of two key lncRNAs was constructed. We constructed an aberrant lncRNA-mRNA-miRNA ceRNA network in CESC. In addition, Gene Ontology (GO) and KEGG pathway analysis were performed. Results: Using lncRNA/mRNA expression profiling data, the overall analysis revealed that two novel lncRNA signatures (DNM1P35 and MIR155HG) and several mRNAs were found to be significantly correlated with KIRC patient’s overall analysis. Based on the target gene of the two lncRNA in co-expression network, the GO and KEGG analysis were also performed. A dysregulated lncRNA-related ceRNA network was also observed. Conclusion: These results suggested that the two novel lncRNAs signatures may act as independent prognostic biomarkers for predicting the survival of KIRC patient
    • …
    corecore