2,880 research outputs found

    On-line monitoring of vertical long wavelength track irregularities using bogie pitch rate

    Get PDF
    Long wavelength track irregularities are the key factors which influence vehicle stability and comfort. An on-line monitoring method is proposed to detect the vertical long wavelength track irregularities based on bogie pitch rate. Firstly, the principle of on-line monitoring method based on axle-box acceleration or bogie pitch rate was presented. Secondly, to process bogie pitch rate, a mix-filtering approach which contains time-space domain transformation, double integration, baseline correction and RLS (Recursive Least Squares) adaptive compensation filter was proposed. Thirdly, a coupling dynamics model of vertical vehicle-track interactions was developed to obtain bogie pitch rate. The obtained bogie pitch rate was then filtered with the signal processing approach. When the processed result compares with the actual irregularities, the SD (Standard Deviation) is 0.327 mm and the NMSE (Normalized Mean Square Error) is –9.1495. The experimental result shows that the proposed on-line monitoring method based on bogie pitch rate and signal processing approach are capable of monitoring the long wavelength track irregularities accurately and effectively

    The global geometrical property of jet events in high-energy nuclear collisions

    Full text link
    We present the first theoretical study of medium modifications of the global geometrical pattern, i.e., transverse sphericity (SS_{\perp}) distribution of jet events with parton energy loss in relativistic heavy-ion collisions. In our investigation, POWHEG+PYTHIA is employed to make an accurate description of transverse sphericity in the p+p baseline, which combines the next-to-leading order (NLO) pQCD calculations with the matched parton shower (PS). The Linear Boltzmann Transport (LBT) model of the parton energy loss is implemented to simulate the in-medium evolution of jets. We calculate the event normalized transverse sphericity distribution in central Pb+Pb collisions at the LHC, and give its medium modifications. An enhancement of transverse sphericity distribution at small SS_{\perp} region but a suppression at large SS_{\perp} region are observed in A+A collisions as compared to their p+p references, which indicates that in overall the geometry of jet events in Pb+Pb becomes more pencil-like. We demonstrate that for events with 2 jets in the final-state of heavy-ion collisions, the jet quenching makes the geometry more sphere-like with medium-induced gluon radiation. However, for events with 3\ge 3~jets, parton energy loss in the QCD medium leads to the events more pencil-like due to jet number reduction, where less energetic jets may lose their energies and then fall off the jet selection kinematic cut. These two effects offset each other and in the end result in more jetty events in heavy-ion collisions relative to that in p+p.Comment: 9 pages, 9 figure

    Four-state rock-paper-scissors games on constrained Newman-Watts networks

    Get PDF
    We study the cyclic dominance of three species in two-dimensional constrained Newman-Watts networks with a four-state variant of the rock-paper-scissors game. By limiting the maximal connection distance RmaxR_{max} in Newman-Watts networks with the long-rang connection probability pp, we depict more realistically the stochastic interactions among species within ecosystems. When we fix mobility and vary the value of pp or RmaxR_{max}, the Monte Carlo simulations show that the spiral waves grow in size, and the system becomes unstable and biodiversity is lost with increasing pp or RmaxR_{max}. These results are similar to recent results of Reichenbach \textit{et al.} [Nature (London) \textbf{448}, 1046 (2007)], in which they increase the mobility only without including long-range interactions. We compared extinctions with or without long-range connections and computed spatial correlation functions and correlation length. We conclude that long-range connections could improve the mobility of species, drastically changing their crossover to extinction and making the system more unstable.Comment: 6 pages, 7 figure

    Orbital density wave induced by electron-lattice coupling in orthorhombic iron pnictides

    Full text link
    In this paper we explore the magnetic and orbital properties closely related to a tetragonal-orthorhombic structural phase transition in iron pnictides based on both two- and five-orbital Hubbard models. The electron-lattice coupling, which interplays with electronic interaction, is self-consistently treated. Our results reveal that the orbital polarization stabilizes the spin density wave (SDW) order in both tetragonal and orthorhombic phases. However, the ferro-orbital density wave (F-ODW) only occurs in the orthorhombic phase rather than in the tetragonal one. Magnetic moments of Fe are small in the intermediate Coulomb interaction region for the striped antiferromangnetic phase in the realistic five orbital model. The anisotropic Fermi surface in the SDW/ODW orthorhombic phase is well in agreement with the recent angle-resolved photoemission spectroscopy experiments. These results suggest a scenario that the magnetic phase transition is driven by the ODW order mainly arising from the electron-lattice coupling.Comment: 21 pages, 10 figure

    Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in Nasopharyngeal Carcinoma Cell Lines

    Get PDF
    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines.Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of alterations in the morphology of the cells.Results: CQ treatment led to a significant reduction in the rate of cell proliferation in NPC cells after 48 h. In HONE-1 and HNE-1 cell lines viability was reduced to 89 and 82 %, respectively on treatment with 10 μΜ concentration of CQ without affecting normal human skin keratinocyte cell line, K38. The expression of Ki67, a marker for proliferation as well as proliferating cell nuclear antigen (PCNA), decreased in the CQ-treated NPC cells. Morphological examination of NPC cells revealed cell apoptosis on treatment with CQ after 48 h. Treatment of NPC cells with CQ induced activation of caspases and DNA was damaged which further confirmed CQ mediated induction of apoptosis. The level of apoptotic cells in CQ treated and untreated control HONE-1 cell cultures was 53.67 and 3.78 %, respectively (p < 0.05). In addition, CQ treatment decreased reactive oxygen species (ROS) generation in NPC cells.Conclusion: CQ inhibits cell proliferation of NPC cells by inducing apoptosis via DNA damage, and may be of therapeutic use for the treatment of NPC. However, this requires clinical investigation to ascertain its therapeutic potential.Keywords: Chloroquinone, Caspases, Apoptosis, Nuclear antigen, Nasopharyngeal carcinom
    corecore