616 research outputs found

    Sieve Inference on Semi-nonparametric Time Series Models

    Get PDF
    The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a "pre-asymptotic" sieve variance estimator that captures temporal dependence. We construct a "pre-asymptotic" Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled "pre-asymptotic" Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled "pre-asymptotic" Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.Weak dependence, Sieve M estimation, Sieve Riesz representor, Irregular functional, Misspecification, Pre-asymptotic variance, Orthogonal series long run variance estimation, F distribution

    Sieve Inference on Semi-nonparametric Time Series Models

    Get PDF
    The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a “pre-asymptotic” sieve variance estimator that captures temporal dependence. We construct a “pre-asymptotic” Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled “pre-asymptotic” Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled “pre-asymptotic” Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values

    Sieve inference on semi-nonparametric time series models

    Get PDF
    The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a “pre-asymptotic” sieve variance estimator that captures temporal dependence. We construct a “pre-asymptotic” Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled “pre-asymptotic” Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled “pre-asymptotic” Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values

    Vision-Language Instruction Tuning: A Review and Analysis

    Full text link
    Instruction tuning is a crucial supervised training phase in Large Language Models (LLMs), aiming to enhance the LLM's ability to generalize instruction execution and adapt to user preferences. With the increasing integration of multi-modal data into LLMs, there is growing interest in Vision-Language Instruction Tuning (VLIT), which presents more complex characteristics compared to pure text instruction tuning. In this paper, we systematically review the latest VLIT settings and corresponding datasets in multi-modal LLMs and provide insights into the intrinsic motivations behind their design. For the first time, we offer a detailed multi-perspective categorization for existing VLIT datasets and identify the characteristics that high-quality VLIT data should possess. By incorporating these characteristics as guiding principles into the existing VLIT data construction process, we conduct extensive experiments and verify their positive impact on the performance of tuned multi-modal LLMs. Furthermore, we discuss the current challenges and future research directions of VLIT, providing insights for the continuous development of this field. The code and dataset related to this paper have been open-sourced at https://github.com/palchenli/VL-Instruction-Tuning.Comment: 34 pages, 6 figure

    Deep Reinforcement Learning from Hierarchical Weak Preference Feedback

    Full text link
    Reward design is a fundamental, yet challenging aspect of practical reinforcement learning (RL). For simple tasks, researchers typically handcraft the reward function, e.g., using a linear combination of several reward factors. However, such reward engineering is subject to approximation bias, incurs large tuning cost, and often cannot provide the granularity required for complex tasks. To avoid these difficulties, researchers have turned to reinforcement learning from human feedback (RLHF), which learns a reward function from human preferences between pairs of trajectory sequences. By leveraging preference-based reward modeling, RLHF learns complex rewards that are well aligned with human preferences, allowing RL to tackle increasingly difficult problems. Unfortunately, the applicability of RLHF is limited due to the high cost and difficulty of obtaining human preference data. In light of this cost, we investigate learning reward functions for complex tasks with less human effort; simply by ranking the importance of the reward factors. More specifically, we propose a new RL framework -- HERON, which compares trajectories using a hierarchical decision tree induced by the given ranking. These comparisons are used to train a preference-based reward model, which is then used for policy learning. We find that our framework can not only train high performing agents on a variety of difficult tasks, but also provide additional benefits such as improved sample efficiency and robustness. Our code is available at https://github.com/abukharin3/HERON.Comment: 28 Pages, 15 figure
    corecore