261 research outputs found

    Med-DANet V2: A Flexible Dynamic Architecture for Efficient Medical Volumetric Segmentation

    Full text link
    Recent works have shown that the computational efficiency of 3D medical image (e.g. CT and MRI) segmentation can be impressively improved by dynamic inference based on slice-wise complexity. As a pioneering work, a dynamic architecture network for medical volumetric segmentation (i.e. Med-DANet) has achieved a favorable accuracy and efficiency trade-off by dynamically selecting a suitable 2D candidate model from the pre-defined model bank for different slices. However, the issues of incomplete data analysis, high training costs, and the two-stage pipeline in Med-DANet require further improvement. To this end, this paper further explores a unified formulation of the dynamic inference framework from the perspective of both the data itself and the model structure. For each slice of the input volume, our proposed method dynamically selects an important foreground region for segmentation based on the policy generated by our Decision Network and Crop Position Network. Besides, we propose to insert a stage-wise quantization selector to the employed segmentation model (e.g. U-Net) for dynamic architecture adapting. Extensive experiments on BraTS 2019 and 2020 show that our method achieves comparable or better performance than previous state-of-the-art methods with much less model complexity. Compared with previous methods Med-DANet and TransBTS with dynamic and static architecture respectively, our framework improves the model efficiency by up to nearly 4.1 and 17.3 times with comparable segmentation results on BraTS 2019.Comment: Accepted by WACV 202

    Enhance Primordial Black Hole Abundance through the Non-linear Processes around Bounce Point

    Full text link
    The non-singular bouncing cosmology is an alternative paradigm to inflation, wherein the background energy density vanishes at the bounce point, in the context of Einstein gravity. Therefore, the non-linear effects in the evolution of density fluctuations (δρ\delta \rho) may be strong in the bounce phase, which potentially provides a mechanism to enhance the abundance of primordial black holes (PBHs). This article presents a comprehensive illustration for PBH enhancement due to the bounce phase. To calculate the non-linear evolution of δρ\delta \rho, the Raychaudhuri equation is numerically solved here. Since the non-linear processes may lead to a non-Gaussian probability distribution function for δρ\delta \rho after the bounce point, the PBH abundance is calculated in a modified Press-Schechter formalism. In this case, the criterion of PBH formation is complicated, due to complicated non-linear evolutionary behavior of δρ\delta \rho during the bounce phase. Our results indicate that the bounce phase indeed has potential to enhance the PBH abundance sufficiently. Furthermore, the PBH abundance is applied to constrain the parameters of bounce phase, providing a complementary to the surveys of cosmic microwave background and large scale structure.Comment: 17 pages, 6 figure
    corecore