8,050 research outputs found

    Kondo Metal and Ferrimagnetic Insulator on the Triangular Kagom\'e Lattice

    Full text link
    We obtain the rich phase diagrams in the Hubbard model on the triangular Kagom\'e lattice as a function of interaction, temperature and asymmetry, by combining the cellular dynamical mean-field theory with the continuous time quantum Monte Carlo method. The phase diagrams show the asymmetry separates the critical points in Mott transition of two sublattices on the triangular Kagom\'e lattice and produces two novel phases called plaquette insulator with an obvious gap and a gapless Kondo metal. When the Coulomb interaction is stronger than the critical value Uc, a short range paramagnetic insulating phase, which is a candidate for the short rang resonating valence-bond spin liquid, emerges before the ferrimagnetic order is formed independent of asymmetry. Furthermore, we discuss how to measure these phases in future experiments

    Algebraic Quantum Error-Correction Codes

    Full text link
    Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction distinguished by different orthogonal vector subspaces, the coset subspaces. Moreover, the generated codes can be classified into four types with respect to the spinors in the unitary Lie algebra and a chosen initial quantum state

    Physics Inspired Optimization on Semantic Transfer Features: An Alternative Method for Room Layout Estimation

    Full text link
    In this paper, we propose an alternative method to estimate room layouts of cluttered indoor scenes. This method enjoys the benefits of two novel techniques. The first one is semantic transfer (ST), which is: (1) a formulation to integrate the relationship between scene clutter and room layout into convolutional neural networks; (2) an architecture that can be end-to-end trained; (3) a practical strategy to initialize weights for very deep networks under unbalanced training data distribution. ST allows us to extract highly robust features under various circumstances, and in order to address the computation redundance hidden in these features we develop a principled and efficient inference scheme named physics inspired optimization (PIO). PIO's basic idea is to formulate some phenomena observed in ST features into mechanics concepts. Evaluations on public datasets LSUN and Hedau show that the proposed method is more accurate than state-of-the-art methods.Comment: To appear in CVPR 2017. Project Page: https://sites.google.com/view/st-pio
    • …
    corecore