3 research outputs found

    The evolution of pyrrolizidine alkaloid diversity among and within Jacobaea species

    No full text
    Plants produce many secondary metabolites showing considerable inter- and intraspecific diversity of concentration and composition as a strategy to cope with environmental stresses. The evolution of plant defenses against herbivores and pathogens can be unraveled by understanding the mechanisms underlying chemical diversity. Pyrrolizidine alkaloids are a class of secondary metabolites with high diversity. We performed a qualitative and quantitative analysis of 80 pyrrolizidine alkaloids with liquid chromatography-tandem mass spectrometry of leaves from 17 Jacobaea species including one to three populations per species with 4–10 individuals per population grown under controlled conditions in a climate chamber. We observed large inter- and intraspecific variation in pyrrolizidine alkaloid concentration and composition, which were both species-specific. Furthermore, we sequenced 11 plastid and three nuclear regions to reconstruct the phylogeny of the 17 Jacobaea species. Ancestral state reconstruction at the species level showed mainly random distributions of individual pyrrolizidine alkaloids. We found little evidence for phylogenetic signals, as nine out of 80 pyrrolizidine alkaloids showed a significant phylogenetic signal for Pagel's λ statistics only, whereas no significance was detected for Blomberg's K measure. We speculate that this high pyrrolizidine alkaloid diversity is the result of the upregulation and downregulation of specific pyrrolizidine alkaloids depending on ecological needs rather than gains and losses of particular pyrrolizidine alkaloid biosynthesis genes during evolution.</p

    SDNOR, a Novel Antioxidative lncRNA, Is Essential for Maintaining the Normal State and Function of Porcine Follicular Granulosa Cells

    No full text
    Increasing evidence shows that lncRNAs, an important kind of endogenous regulator, are involved in the regulation of follicular development and female fertility, but the mechanism remain largely unknown. In this study, we found that SDNOR, a recently identified antiapoptotic lncRNA, is a potential multifunctional regulator in porcine follicular granulosa cells (GCs) through RNA-seq and multi-dimension analyses. SDNOR-mediated regulatory networks were established and identified that SOX9, a transcription factor inhibited by SDNOR, mediates SDNOR’s regulation of the transcription of downstream targets. Functional analyses showed that loss of SDNOR significantly impairs GC morphology, inhibits cell proliferation and viability, reduces E2/P4 index, and suppresses the expression of crucial markers, including PCNA, Ki67, CDK2, CYP11A1, CYP19A1, and StAR. Additionally, after the detection of ROS, SOD, GSH-Px, and MDA, we found that SDNOR elevates the resistance of GCs to oxidative stress (OS) and also inhibits OS-induced apoptosis. Notably, GCs with high SDNOR levels are insensitive to oxidative stress, leading to lower apoptosis rates and higher environmental adaptability. In summary, our findings reveal the regulation of porcine GCs in response to oxidative stress from the perspective of lncRNA and demonstrate that SDNOR is an essential antioxidative lncRNA for maintaining the normal state and function of GCs
    corecore