41 research outputs found

    Non-fasting lipids and risk of cardiovascular disease in patients with diabetes mellitus

    Get PDF
    The aim of this study was to examine the effect of postprandial time on the associations and predictive value of non-fasting lipid levels and cardiovascular disease risk in participants with diabetes. This study was conducted among 1,337 participants with diabetes from the Dutch and German (Potsdam) contributions to the European Prospective Investigation into Cancer and Nutrition. At baseline, total cholesterol, LDL- and HDL-cholesterol and triacylglycerol concentrations were measured and the ratio of total cholesterol/HDL-cholesterol was calculated. Participants were followed for incidence of cardiovascular disease. Lipid concentrations changed minimally with increasing postprandial time, except for triacylglycerol which was elevated just after a meal and declined over time (1.86 at 0.1 h to 1.33 at >6 h, p for trend <0.001). During a mean follow-up of 8 years, 116 cardiovascular events were documented. After adjustment for potential confounders, triacylglycerol (HR for third tertile compared with first tertile (HR(t)₃(to)₁), 1.73 [95% CI 1.04, 2.87]), HDL-cholesterol (HR(t)₃(to)₁, 0.41 [95% CI 0.23, 0.72]) and total cholesterol/HDL-cholesterol ratio (HR(t)₃(to)₁, 1.65 [95% CI 0.95, 2.85]) were associated with cardiovascular disease, independent of postprandial time. Cardiovascular disease risk prediction using the UK Prospective Diabetes Study risk engine was not affected by postprandial time. Postprandial time did not affect associations between lipid concentrations and cardiovascular disease risk in patients with diabetes, nor did it influence prediction of cardiovascular disease. Therefore, it may not be necessary to use fasting blood samples to determine lipid concentrations for cardiovascular disease risk prediction in patients with diabete

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits

    Get PDF
    Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men &lt;= 50y, men &gt; 50y, women &lt;= 50y, women &gt; 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR&lt; 5%) age-specific effects, of which 11 had larger effects in younger (&lt; 50y) than in older adults (&gt;= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.</p
    corecore