174 research outputs found
Advances in oncolytic herpes simplex virus and adenovirus therapy for recurrent glioma
Recurrent glioma treatment is challenging due to molecular heterogeneity and treatment resistance commonly observed in these tumors. Researchers are actively pursuing new therapeutic strategies. Oncolytic viruses have emerged as a promising option. Oncolytic viruses selectively replicate within tumor cells, destroying them and stimulating the immune system for an enhanced anticancer response. Among Oncolytic viruses investigated for recurrent gliomas, oncolytic herpes simplex virus and oncolytic adenovirus show notable potential. Genetic modifications play a crucial role in optimizing their therapeutic efficacy. Different generations of replicative conditioned oncolytic human adenovirus and oncolytic HSV have been developed, incorporating specific modifications to enhance tumor selectivity, replication efficiency, and immune activation. This review article summarizes these genetic modifications, offering insights into the underlying mechanisms of Oncolytic virusesâ therapy. It also aims to identify strategies for further enhancing the therapeutic benefits of Oncolytic viruses. However, it is important to acknowledge that additional research and clinical trials are necessary to establish the safety, efficacy, and optimal utilization of Oncolytic viruses in treating recurrent glioblastoma
Pressure induced superconductivity bordering a charge-density-wave state in NbTe4 with strong spinorbit coupling
Transition-metal chalcogenides host various phases of matter, such as
charge-density wave (CDW), superconductors, and topological insulators or
semimetals. Superconductivity and its competition with CDW in low-dimensional
compounds have attracted much interest and stimulated considerable research.
Here we report pressure induced superconductivity in a strong spin-orbit (SO)
coupled quasi-one-dimensional (1D) transition-metal chalcogenide NbTe,
which is a CDW material under ambient pressure. With increasing pressure, the
CDW transition temperature is gradually suppressed, and superconducting
transition, which is fingerprinted by a steep resistivity drop, emerges at
pressures above 12.4 GPa. Under pressure = 69 GPa, zero resistance is
detected with a transition temperature = 2.2 K and an upper critical
field = 2 T. We also find large magnetoresistance (MR) up to 102\% at
low temperatures, which is a distinct feature differentiating NbTe from
other conventional CDW materials.Comment: https://rdcu.be/LX8
Phylogenetic, Expression, and Bioinformatic Analysis of the ABC1
We studied 17 ABC1 genes in Populus trichocarpa, all of which contained an ABC1 domain consisting of about 120 amino acid residues. Most of the ABC1 gene products were located in the mitochondria or chloroplasts. All had a conserved VAVK-like motif and a DFG motif. Phylogenetic analysis grouped the genes into three subgroups. In addition, the chromosomal locations of the genes on the 19 Populus chromosomes were determined. Gene structure was studied through exon/intron organization and the MEME motif finder, while heatmap was used to study the expression diversity using EST libraries. According to the heatmap, PtrABC1P14 was highlighted because of the high expression in tension wood which related to secondary cell wall formation and cellulose synthesis, thus making a contribution to follow-up experiment in wood formation. Promoter cis-element analysis indicated that almost all of the ABC1 genes contained one or two cis-elements related to ABA signal transduction pathway and drought stress. Quantitative real-time PCR was carried out to evaluate the expression of all of the genes under abiotic stress conditions (ABA, CdCl2, high temperature, high salinity, and drought); the results showed that some of the genes were affected by these stresses and confirmed the results of promoter cis-element analysis
Quantum Well Laser Diodes With Slightly-Doped Tunnel Junction
We experimentally investigate the electrical and optical characteristics of conventional quantum well laser diodes and the quantum well laser diodes with slightly-doped tunnel junction N++GaAs/undoped-GaAs. The results show that the slightly-doped tunnel junction give significant role on the laser diodes performances in the InGaAs/GaAs quantum well material system. The TJ LD has a internal quantum efficiency of 21% and the loss is 6.9 em -1 , the current threshold is 35 mA, both the lasers are operating at 1.06 Îźm, but the slightly-doped tunnel junction diode show nonlinear S-shaped current-voltage and broadband lasing characteristics. The results may also lead to the realization of more applications
FIRST: A Million-Entry Dataset for Text-Driven Fashion Synthesis and Design
Text-driven fashion synthesis and design is an extremely valuable part of
artificial intelligence generative content(AIGC), which has the potential to
propel a tremendous revolution in the traditional fashion industry. To advance
the research on text-driven fashion synthesis and design, we introduce a new
dataset comprising a million high-resolution fashion images with rich
structured textual(FIRST) descriptions. In the FIRST, there is a wide range of
attire categories and each image-paired textual description is organized at
multiple hierarchical levels. Experiments on prevalent generative models
trained over FISRT show the necessity of FIRST. We invite the community to
further develop more intelligent fashion synthesis and design systems that make
fashion design more creative and imaginative based on our dataset. The dataset
will be released soon.Comment: 11 pages, 8 figure
RhoA/ROCK-dependent moesin phosphorylation regulates AGE-induced endothelial cellular response
<p>Abstract</p> <p>Background</p> <p>The role of advanced glycation end products (AGEs) in the development of diabetes, especially diabetic complications, has been emphasized in many reports. Accumulation of AGEs in the vasculature triggers a series of morphological and functional changes in endothelial cells (ECs) and induces an increase of endothelial permeability. This study was to investigate the involvement of RhoA/ROCK-dependent moesin phosphorylation in endothelial abnormalities induced by AGEs.</p> <p>Methods</p> <p>Using human dermal microvascular endothelial cells (HMVECs), the effects of human serum albumin modified-AGEs (AGE-HSA) on the endothelium were assessed by measuring monolayer permeability and staining of F-actin in HMVECs. Activations of RhoA and ROCK were determined by a luminescence-based assay and immunoblotting. Transfection of recombinant adenovirus that was dominant negative for RhoA (RhoA N19) was done to down-regulate RhoA expression, while adenovirus with constitutively activated RhoA (RhoA L63) was transfected to cause overexpression of RhoA in HMVECs. H-1152 was employed to specifically block activation of ROCK. Co-immunoprecipitation was used to further confirm the interaction of ROCK and its downstream target moesin. To identify AGE/ROCK-induced phosphorylation site in moesin, two mutants pcDNA3/HA-moesinT<sup>558A </sup>and pcDNA3/HA-moesinT<sup>558D </sup>were applied in endothelial cells.</p> <p>Results</p> <p>The results showed that AGE-HSA increased the permeability of HMVEC monolayer and triggered the formation of F-actin-positive stress fibers. AGE-HSA enhanced RhoA activity as well as phosphorylation of ROCK in a time- and dose-dependent manner. Down-regulation of RhoA expression with RhoA N19 transfection abolished these AGE-induced changes, while transfection of RhoA L63 reproduced the AGE-evoked changes. H-1152 attenuated the AGE-induced alteration in monolayer permeability and cytoskeleton. The results also confirmed the AGE-induced direct interaction of ROCK and moesin. Thr558 was further identified as the phosphorylating site of moesin in AGE-evoked endothelial responses.</p> <p>Conclusion</p> <p>These results confirm the involvement of RhoA/ROCK pathway and subsequent moesin Thr558 phosphorylation in AGE-mediated endothelial dysfunction.</p
- âŚ