177 research outputs found
Fabrication and characterization of advanced materials using laser metal deposition from elemental powder mixture
Over the past decades of years, a great deal of money has been spent to machine large and complex parts from high-performance metals (i.e., titanium components for aerospace applications), so users attempt to circumvent the high cost of materials. Laser metal deposition (LMD) is an additive manufacturing technique capable of fabricating complicated structures with superior properties. This dissertation aims to improve the applications of LMD technique for manufacturing metallic components by using various elemental powder mixture according to the following three categories of research topics. The first research topic is to investigate and develop a cost-effective possibility by using elemental powder mixture for metallic components fabrication. Based on the studies of fabricating thin-wall Ti-6Al-4V using elemental powder mixture, comparative close particle number for Ti, Al and V powder could easily get industry qualified Ti-6Al-4V components. The particle number for each element in powder blends has been proved to be a key factor for composition control in the final deposit part. The second research topic focuses on the application improvements of elemental powder manufacturing. By fabricating AlxCoFeNiCu1-x (x = 0.25, 0.5, 0.75) high entropy alloys from elemental powder based feedstocks, it enhances the usage of elemental powder to fabricate novel materials with complex compositions. The third research topic extends the applications of using elemental powder mixture to the broader area. A functionally gradient material (FGM) path is developed to successfully join titanium alloy with γ-TiAl. This dissertation leads to new knowledge for the effective fabrication of unique and complex metallic components. Moreover, the research results of the dissertation could benefit a wide range of industries --Abstract, page iv
Modelling of directed energy deposition processes
The laser additive manufacturing technique of laser deposition allows quick fabrication of fully-dense metallic components directly from Computer Aided Design (CAD) solid models. The applications of laser deposition include rapid prototyping, rapid tooling and part refurbishment. The development of an accurate predictive model for laser deposition is extremely complicated due to the multitude of process parameters and materials properties involved. In this work, a heat transfer and fluid flow model is developed.
In the heat transfer and fluid flow model, the governing equations for solid, liquid and gas phases in the calculation domain have been formulated using the continuum model. The free surface in the melt pool has been tracked by the Volume of Fluid (VOF) method. Surface tension was modeled by taking the Continuum Surface Force (CSF) model combined with a force-balance flow algorithm. Laser-powder interaction was modeled to account for the effects of laser power attenuation and powder temperature rise during the laser metal deposition process. Temperature-dependent thermal-physical material properties were considered in the numerical implementation.
The calculation domain is logically partitioned into smaller cells in 3D space. This makes the numerical implementation consume large amounts of computational resources as each cell is considered at each step of the implementation. This challenge has been addressed through the use of parallel computing by way of message passing interface. Simulations were performed and a comparison between the sequential and parallel implementations was also made --Abstract, page iv
Flux Balance Analysis of Dynamic Metabolism in Shewanella oneidensis MR-1 Using a Static Optimization Approach
Shewanella bacteria are facultative anaerobes isolated from aquatic and sedimentary environments (Hau and Gralnick 2007) with a broad capacity for reduction of multiple electron receptors (Pinchuk et al. 2009; Serres and Riley 2006), including Fe(III), Mn(IV), sulfur, nitrate, and fumarate. With the accomplishment of complete genome sequencing of several Shewanella bacteria, the general pictures of the carbon metabolism have been revealed (Serres and Riley 2006). metabolism. One of the most physiological methods to decipher the time-variant metabolic regulation is to determine the dynamic distribution of intracellular metabolic fluxes since it reveals the final response of cellular metabolism to genomic, transcriptional and post-transcriptional regulations (Sauer 2006; Tang et al. 2009). In order to track the dynamic intracellular metabolic regulation, dynamic flux balance analysis (DFBA) was developed (Mahadevan et al. 2002), in which cell growth phase was divided into numerous stages, assuming that at each stage a new metabolic steady state was maintained. All the metabolic fluxes were then searched to satisfy the objective functions set for each stage. By solving this nonlinear optimization model using a cutting-edge nonlinear optimization solver (IPOPT), we confirmed the changing of carbon sources for the growth of Shewanella oneidensis MR-1 and deciphered the dynamic regulation of intracellular metabolism
Effect of Powder Particle Size on the Fabrication of Ti-6Al-4V using Laser Metal Deposition from Elemental Powder Mixture
Direct LMD (laser metal deposition) was used to fabricate thin-wall Ti-6Al-4V using the powder mixture of Ti-6 wt.%Al-4 wt.%V. SEM (scanning electron microscopy), OM (optical microscopy) and EDS (energy dispersive spectroscopy) were employed to examine the chemical composition and microstructure of the as-deposited sections. Vickers hardness tests were then applied to characterize the mechanical properties of the deposit samples which were fabricated using pre-mixed elemental powders. The EDS line scans indicated that the chemical composition of the samples was homogenous across the deposit. After significant analysis, some differences were observed among two sets of deposit samples which varied in the particle size of the mixing Ti-6wt.%Al-4wt.%V powder. It could be found that the set with similar particle number for Ti, Al and V powder made composition much more stable and could easily get industry qualified Ti-6Al-4V components
Industrial Robot Trajectory Accuracy Evaluation Maps for Hybrid Manufacturing Process based on Joint Angle Error Analysis
Industrial robots have been widely used in various fields. The joint angle error is the main factor that affects the accuracy performance of the robot. It is important to notice that these kinematic parameters error cannot be eliminated from the robot system completely. Even after calibration, these errors still exist and will be fluctuated during the robot system running. This paper proposed a new method of finding the best position and orientation to perform a specific working path based on the current accuracy capacity of the robot system. By analyzing the robot forward/inverse kinematic and the angle error sensitivity of different joint in the serial manipulator system, a new evaluation formulation is established for mapping the trajectory accuracy within the robot’s working volume. The influence of different position and orientation on the movement accuracy of the end effector has been verified by experiments and discussed thoroughly. Finally, a visualized evaluation map can be obtained to describe the accuracy difference of a robotic laser deposition working path at different positions and orientations. This method is helpful for making the maximum usage of the robot’s current accuracy ability rather than blindly pursuing the higher accuracy of the robot system
High resolution regional seismic attenuation tomography in eastern Tibetan Plateau and adjacent regions
The Q of regional seismic phases Lg and Pg within the crust is assumed as a proxy for crustal Qβ and Qα, which is used as a constraint of crustal rheology. We measure regional‐phase Q of the eastern Tibetan Plateau and adjacent areas. This method eliminates contributions from source and site responses and is an improvement on the Two‐Station Method (TSM). We have generated tomographic images of crustal attenuation anomalies with resolution as high as 1°. In general we observe low Q in the northernmost portions of the Tibetan Plateau and high Q in the more tectonically stable regions such as the interior of the Qaidam basin. The calculated site responses appear to correlate with topography or sediment thickness. Furthermore the relationship between earthquake magnitudes and calculated source terms suggest that the RTM method effectively removes the source response and may be used as an alternative to source magnitude
Large Language Model-based Human-Agent Collaboration for Complex Task Solving
In recent developments within the research community, the integration of
Large Language Models (LLMs) in creating fully autonomous agents has garnered
significant interest. Despite this, LLM-based agents frequently demonstrate
notable shortcomings in adjusting to dynamic environments and fully grasping
human needs. In this work, we introduce the problem of LLM-based human-agent
collaboration for complex task-solving, exploring their synergistic potential.
In addition, we propose a Reinforcement Learning-based Human-Agent
Collaboration method, ReHAC. This approach includes a policy model designed to
determine the most opportune stages for human intervention within the
task-solving process. We construct a human-agent collaboration dataset to train
this policy model in an offline reinforcement learning environment. Our
validation tests confirm the model's effectiveness. The results demonstrate
that the synergistic efforts of humans and LLM-based agents significantly
improve performance in complex tasks, primarily through well-planned, limited
human intervention. Datasets and code are available at:
https://github.com/XueyangFeng/ReHAC
- …