82 research outputs found

    Learning to Detect Noisy Labels Using Model-Based Features

    Full text link
    Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption

    Visualizing Band Offsets and Edge States in Bilayer-Monolayer Transition Metal Dichalcogenides Lateral Heterojunction

    Get PDF
    Semiconductor heterostructures are fundamental building blocks for many important device applications. The emergence of two-dimensional semiconductors opens up a new realm for creating heterostructures. As the bandgaps of transition metal dichalcogenides thin films have sensitive layer dependence, it is natural to create lateral heterojunctions using the same materials with different thicknesses. Using scanning tunneling microscopy and spectroscopy, here we show the real space image of electronic structures across the bilayer-monolayer interface in MoSe2 and WSe2. Most bilayer-monolayer heterojunctions are found to have a zigzag-orientated interface, and the band alignment of such atomically sharp heterojunctions is of type-I with a well-defined interface mode which acts as a narrower-gap quantum wire. The ability to utilize such commonly existing thickness terrace as lateral heterojunctions is a crucial addition to the tool set for device applications based on atomically thin transition metal dichalcogenides, with the advantage of easy and flexible implementation.Comment: 19 pages in total, 4 figures and 1 tabl

    Magnetic-coupled electronic landscape in bilayer-distorted titanium-based kagome metals

    Full text link
    Quantum materials whose atoms are arranged on a lattice of corner-sharing triangles, i.e.\textit{i.e.}, the kagome lattice, have recently emerged as a captivating platform for investigating exotic correlated and topological electronic phenomena. Here, we combine ultra-low temperature angle-resolved photoemission spectroscopy (ARPES) with scanning tunneling microscopy and density functional theory calculations to reveal the fascinating electronic structure of the bilayer-distorted kagome material Ln\textit{Ln}Ti3{_3}Bi4{_4}, where Ln\textit{Ln} stands for Nd and Yb. Distinct from other kagome materials, Ln\textit{Ln}Ti3{_3}Bi4{_4} exhibits two-fold, rather than six-fold, symmetries, stemming from the distorted kagome lattice, which leads to a unique electronic structure. Combining experiment and theory we map out the electronic structure and discover double flat bands as well as multiple van Hove singularities (VHSs), with one VHS exhibiting higher-order characteristics near the Fermi level. Notably, in the magnetic version NdTi3{_3}Bi4{_4}, the ultra-low base temperature ARPES measurements unveil an unconventional band splitting in the band dispersions which is induced by the ferromagnetic ordering. These findings reveal the potential of bilayer-distorted kagome metals Ln\textit{Ln}Ti3{_3}Bi4{_4} as a promising platform for exploring novel emergent phases of matter at the intersection of strong correlation and magnetism
    • …
    corecore