6,235 research outputs found

    Towards a Fisher-information description of complexity in de Sitter universe

    Full text link
    Recent developments on holography and quantum information physics suggest that quantum information theory come to play a fundamental role in understanding quantum gravity. Cosmology, on the other hand, plays a significant role in testing quantum gravity effects. How to apply this idea to a realistic universe is still missing. Here we show some concepts in quantum information theory have their cosmological descriptions. Particularly, we show complexity of a tensor network can be regarded as a Fisher information measure(FIM) of a dS universe, followed by several observations: (i) the holographic entanglement entropy has a tensor-network description and admits a information-theoretical interpretation, (ii) on-shell action of dS spacetime has a same description of FIM, (iii) complexity/action(CA) duality holds for dS spacetime. Our result is also valid for f(R)f(R) gravity, whose FIM exhibits the same features of a recent proposed LnL^n norm complexity.Comment: 18 pages, 3 figures. v2: improvements to presentation, fixes typos and matches published versio

    Transition from Tonks-Girardeau gas to super-Tonks-Girardeau gas as an exact many-body dynamics problem

    Full text link
    We investigate transition of a one-dimensional interacting Bose gas from a strongly repulsive regime to a strongly attractive regime, where a stable highly excited state known as the super Tonks-Girardeau gas was experimentally realized very recently. By solving exact dynamics of the integrable Lieb-Liniger Bose gas, we demonstrate that such an excited gas state can be a very stable dynamic state. Furthermore we calculate the breathing mode of the super Tonks-Girardeau gas which is found to be in good agreement with experimental observation. Our results show that the highly excited super Tonks-Girardeau gas phase can be well understood from the fundamental theory of the solvable Bose gas.Comment: 4 pages, 4 figures, version to appear in Phys. Rev. A as a Rapid Communicatio

    Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases

    Full text link
    A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests a way to search for such strongly correlated behaviour in systems of interacting fermions in one dimension. We thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, we find that they are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.Comment: 4 pages, 2 figure

    Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions

    Full text link
    Dijet, dihadron, hadron-jet angular correlations have been reckoned as important probes of the transverse momentum broadening effects in relativistic nuclear collisions. When a pair of high-energy jets created in hard collisions traverse the quark-gluon plasma produced in heavy-ion collisions, they become de-correlated due to the vacuum soft gluon radiation associated with the Sudakov logarithms and the medium-induced transverse momentum broadening. For the first time, we employ the systematical resummation formalism and establish a baseline calculation to describe the dihadron and hadron-jet angular correlation data in pppp and peripheral AAAA collisions where the medium effect is negligible. We demonstrate that the medium-induced broadening ⟨p⊥2⟩\langle p_\perp^2\rangle and the so-called jet quenching parameter q^\hat q can be extracted from the angular de-correlations observed in AAAA collisions. A global χ2\chi^2 analysis of dihadron and hadron-jet angular correlation data renders the best fit ⟨p⊥2⟩∼13 GeV2\langle p_\perp^2 \rangle \sim 13~\textrm{GeV}^2 for a quark jet at RHIC top energy. Further experimental and theoretical efforts along the direction of this work shall significantly advance the quantitative understanding of transverse momentum broadening and help us acquire unprecedented knowledge of jet quenching parameter in relativistic heavy-ion collisions.Comment: 6 pages, 3 figure

    Geometric phase and quantum phase transition in an inhomogeneous periodic XY spin-1/2 model

    Full text link
    The notion of geometric phase has been recently introduced to analyze the quantum phase transitions of many-body systems from the geometrical perspective. In this work, we study the geometric phase of the ground state for an inhomogeneous period-two anisotropic XY model in a transverse field. This model encompasses a group of familiar spin models as its special cases and shows a richer critical behavior. The exact solution is obtained by mapping on a fermionic system through the Jordan-Wigner transformation and constructing the relevant canonical transformation to realize the diagonalization of the Hamiltonian coupled in the kk-space. The results show that there may exist more than one quantum phase transition point at some parameter regions and these transition points correspond to the divergence or extremum properties of the Berry curvature.Comment: 6 pages, 3 figures. As a backup of a previous work and some typos in the published version are fixe
    • …
    corecore