6,749 research outputs found
Quantum phase transition in the one-dimensional period-two and uniform compass model
Quantum phase transition in the one-dimensional period-two and uniform
quantum compass model are studied by using the pseudo-spin transformation
method and the trace map method. The exact solutions are presented, the
fidelity, the nearest-neighbor pseudo-spin entanglement, spin and pseudo-spin
correlation functions are then calculated. At the critical point, the fidelity
and its susceptibility change substantially, the gap of pseudo-spin concurrence
is observed, which scales as (N is system size). The spin correlation
functions show smooth behavior around the critical point. In the period-two
chain, the pseudo-spin correlation functions exhibit a oscillating behavior,
which is absent in the unform chain. The divergent correlation length at the
critical point is demonstrated in the general trend for both cases.Comment: 5 pages, 6 figure
The global geometrical property of jet events in high-energy nuclear collisions
We present the first theoretical study of medium modifications of the global
geometrical pattern, i.e., transverse sphericity () distribution of
jet events with parton energy loss in relativistic heavy-ion collisions. In our
investigation, POWHEG+PYTHIA is employed to make an accurate description of
transverse sphericity in the p+p baseline, which combines the next-to-leading
order (NLO) pQCD calculations with the matched parton shower (PS). The Linear
Boltzmann Transport (LBT) model of the parton energy loss is implemented to
simulate the in-medium evolution of jets. We calculate the event normalized
transverse sphericity distribution in central Pb+Pb collisions at the LHC, and
give its medium modifications. An enhancement of transverse sphericity
distribution at small region but a suppression at large
region are observed in A+A collisions as compared to their p+p references,
which indicates that in overall the geometry of jet events in Pb+Pb becomes
more pencil-like. We demonstrate that for events with 2 jets in the final-state
of heavy-ion collisions, the jet quenching makes the geometry more sphere-like
with medium-induced gluon radiation. However, for events with ~jets,
parton energy loss in the QCD medium leads to the events more pencil-like due
to jet number reduction, where less energetic jets may lose their energies and
then fall off the jet selection kinematic cut. These two effects offset each
other and in the end result in more jetty events in heavy-ion collisions
relative to that in p+p.Comment: 9 pages, 9 figure
- …