51,496 research outputs found
The physical and thermal properties of modified rotational molding grade silane cross-linked polyethylene compound
This study is aimed at investigating the physical and thermal properties of the modified rotational molding grade cross-linked polyethylene compound with respect to process ability. Rotational molding grade High Density Polyethylene (HDPE) was blended at various compositions with HDPE and Low Density Polyethylene (LDPE) using twin screw extruder. The melt index of the blends was studied according to ASTM D 1238. The blended compositions were chemically cross-linked with various amount of silane cross-linking agent using two roll-mill. Water curing was then undertaken at 100°C in water bath for 4 and 8 hours. Gel content was measured according to ASTM D 2765 to determine the degree of cross-linking. For thermal analysis, only samples crosslinked with 2.0 phr silane cross-linking agent were investigated on the Differential Scanning Calorimetry (DSC) according to ASTM D 3417. The thermal stability test of the silane Crosslinkable Polyethylene (XLPE) was performed by Thermogravimetric Analyzer (TGA) according to ASTM D 3850. Results on melt index (MI) indicated that the rotational molding grade HDPE blended with HDPE showed higher MI compared to that with LDPE thus improved process ability. The density of rotational molding grade HDPE with HDPE was slightly increased whereas that blended with LDPE was slightly decreased. Samples blended with HDPE, melting temperature, Tm, barely changed and degree of crystallinity, Xc, decreased with compositions. Samples with LDPE Tm and Xc decreased with compositions thus improved process ability. As the silane concentrations increased, the gel content after curing was also increased but independent of compositions. Longer curing time resulted in higher gel content. Thermal stability of the crosslinked HDPE was higher than the uncross-linked HDPE, thus silane cross-linking help to stabilize the blends
Relativistic effect of spin and pseudospin symmetries
Dirac Hamiltonian is scaled in the atomic units , which allows us
to take the non-relativistic limit by setting the Compton wavelength . The evolutions of the spin and pseudospin symmetries towards
the non-relativistic limit are investigated by solving the Dirac equation with
the parameter . With transformation from the original
Compton wavelength to 0, the spin splittings decrease monotonously in all spin
doublets, and the pseudospin splittings increase in several pseudospin
doublets, no change, or even reduce in several other pseudospin doublets. The
various energy splitting behaviors of both the spin and pseudospin doublets
with are well explained by the perturbation calculations of Dirac
Hamiltonian in the present units. It indicates that the origin of spin symmetry
is entirely due to the relativistic effect, while the origin of pseudospin
symmetry cannot be uniquely attributed to the relativistic effect.Comment: 15 pages, 7 figures, accepted by PR
- …