90,854 research outputs found

    The zero exemplar distance problem

    Full text link
    Given two genomes with duplicate genes, \textsc{Zero Exemplar Distance} is the problem of deciding whether the two genomes can be reduced to the same genome without duplicate genes by deleting all but one copy of each gene in each genome. Blin, Fertin, Sikora, and Vialette recently proved that \textsc{Zero Exemplar Distance} for monochromosomal genomes is NP-hard even if each gene appears at most two times in each genome, thereby settling an important open question on genome rearrangement in the exemplar model. In this paper, we give a very simple alternative proof of this result. We also study the problem \textsc{Zero Exemplar Distance} for multichromosomal genomes without gene order, and prove the analogous result that it is also NP-hard even if each gene appears at most two times in each genome. For the positive direction, we show that both variants of \textsc{Zero Exemplar Distance} admit polynomial-time algorithms if each gene appears exactly once in one genome and at least once in the other genome. In addition, we present a polynomial-time algorithm for the related problem \textsc{Exemplar Longest Common Subsequence} in the special case that each mandatory symbol appears exactly once in one input sequence and at least once in the other input sequence. This answers an open question of Bonizzoni et al. We also show that \textsc{Zero Exemplar Distance} for multichromosomal genomes without gene order is fixed-parameter tractable if the parameter is the maximum number of chromosomes in each genome.Comment: Strengthened and reorganize

    Observation of discrete vortex solitons in optically-induced photonic lattices

    Full text link
    We report on the frst experimental observation of discrete vortex solitons in two-dimensional optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.Comment: 4pages, 5 colour figures. to appear in PR

    Edge disorder induced Anderson localization and conduction gap in graphene nanoribbons

    Full text link
    We study the effect of the edge disorder on the conductance of the graphene nanoribbons (GNRs). We find that only very modest edge disorder is sufficient to induce the conduction energy gap in the otherwise metallic GNRs and to lift any difference in the conductance between nanoribbons of different edge geometry. We relate the formation of the conduction gap to the pronounced edge disorder induced Anderson-type localization which leads to the strongly enhanced density of states at the edges, formation of surface-like states and to blocking of conductive paths through the ribbons

    Electronic Structure of New AFFeAs Prototype of Iron Arsenide Superconductors

    Full text link
    This work is provoked by recent discovery of new class prototype systems AFFeAs (A=Sr,Ca) of novel layered ironpnictide High-Tc superconductors (Tc=36K). Here we report ab initio LDA results for electronic structure of the AFFeAs systems. We provide detailed comparison between electronic properties of both new systems and reference LaOFeAs (La111) compound. In the vicinity of the Fermi level all three systems have essentially the same band dispersions. However for iron fluoride systems F(2p) states were found to be separated in energy from As(4p) ones in contrast to La111, where O(2p) states strongly overlaps with As(4p). Thus it should be more plausible to include only Fe(3d) and As(4p) orbitals into a realistic noninteracting model than for La111. Moreover Sr substitution with smaller ionic radius Ca in AFFeAs materials leads to a lattice contruction and stronger Fe(3d)-As(4p) hybridization resulting in smaller value of the density of states at the Fermi level in the case of Ca compound. So to some extend Ca system reminds RE111 with later Rare Earths. However Fermi surface of new fluorides is found to be nearly perfect two-dimensional. Also we do not expect strong dependence of superconducting properties with respect to different types of A substitutes.Comment: 5 pages, 4 figure

    Universality of Electron Mobility in LaAlO3_3/SrTiO3_3 and bulk SrTiO3_3

    Get PDF
    Metallic LaAlO3_3/SrTiO3_3 (LAO/STO) interfaces attract enormous attention, but the relationship between the electron mobility and the sheet electron density, nsn_s, is poorly understood. Here we derive a simple expression for the three-dimensional electron density near the interface, n3Dn_{3D}, as a function of nsn_s and find that the mobility for LAO/STO-based interfaces depends on n3Dn_{3D} in the same way as it does for bulk doped STO. It is known that undoped bulk STO is strongly compensated with N≃5×1018 cm−3N \simeq 5 \times 10^{18}~\rm{cm^{-3}} background donors and acceptors. In intentionally doped bulk STO with a concentration of electrons n3D<Nn_{3D} < N background impurities determine the electron scattering. Thus, when n3D<Nn_{3D} < N it is natural to see in LAO/STO the same mobility as in the bulk. On the other hand, in the bulk samples with n3D>Nn_{3D} > N the mobility collapses because scattering happens on n3Dn_{3D} intentionally introduced donors. For LAO/STO the polar catastrophe which provides electrons is not supposed to provide equal number of random donors and thus the mobility should be larger. The fact that the mobility is still the same implies that for the LAO/STO the polar catastrophe model should be revisited.Comment: 4 pages and 1 figur

    Reducing Electricity Demand Charge for Data Centers with Partial Execution

    Full text link
    Data centers consume a large amount of energy and incur substantial electricity cost. In this paper, we study the familiar problem of reducing data center energy cost with two new perspectives. First, we find, through an empirical study of contracts from electric utilities powering Google data centers, that demand charge per kW for the maximum power used is a major component of the total cost. Second, many services such as Web search tolerate partial execution of the requests because the response quality is a concave function of processing time. Data from Microsoft Bing search engine confirms this observation. We propose a simple idea of using partial execution to reduce the peak power demand and energy cost of data centers. We systematically study the problem of scheduling partial execution with stringent SLAs on response quality. For a single data center, we derive an optimal algorithm to solve the workload scheduling problem. In the case of multiple geo-distributed data centers, the demand of each data center is controlled by the request routing algorithm, which makes the problem much more involved. We decouple the two aspects, and develop a distributed optimization algorithm to solve the large-scale request routing problem. Trace-driven simulations show that partial execution reduces cost by 3%−−10.5%3\%--10.5\% for one data center, and by 15.5%15.5\% for geo-distributed data centers together with request routing.Comment: 12 page

    Characterizing Short Necklace States in Logarithmic Transmission Spectrum of Strongly Localized Systems

    Full text link
    High transmission plateaus exist widely in the logarithmic transmission spectra of localized systems. Their physical origins are short chains of coupled-localized-states embedded inside the localized system, which are dubbed as "short necklace states". In this work, we define the essential quantities and then, based on these quantities, we investigate the short necklace states' properties statistically and quantitatively. Two different approaches are utilized and the results from them agree with each other very well. In the first approach, the typical plateau-width and the typical order of short necklace states are obtained from the correlation function of logarithmic transmission. In the second approach, we investigate statistical distributions of the peak/plateau-width measured in logarithmic transmission spectra. A novel distribution is found, which can be exactly fitted by the summation of two Gaussian distributions. These two distributions are the results of sharp peaks of localized states and the high plateaus of short necklace states. The center of the second distribution also tells us the typical plateau-width of short necklace states. With increasing the system length, the scaling property of typical plateau-width is very special since it almost does not decrease. The methods and the quantities defined in this work can be widely used on Anderson localization studies.Comment: 6 pages, 4 figure

    An Invariance Principle of G-Brownian Motion for the Law of the Iterated Logarithm under G-expectation

    Full text link
    The classical law of the iterated logarithm (LIL for short)as fundamental limit theorems in probability theory play an important role in the development of probability theory and its applications. Strassen (1964) extended LIL to large classes of functional random variables, it is well known as the invariance principle for LIL which provide an extremely powerful tool in probability and statistical inference. But recently many phenomena show that the linearity of probability is a limit for applications, for example in finance, statistics. As while a nonlinear expectation--- G-expectation has attracted extensive attentions of mathematicians and economists, more and more people began to study the nature of the G-expectation space. A natural question is: Can the classical invariance principle for LIL be generalized under G-expectation space? This paper gives a positive answer. We present the invariance principle of G-Brownian motion for the law of the iterated logarithm under G-expectation
    • …
    corecore