2,680 research outputs found

    On Kernel Formulas and Dispersionless Hirota Equations

    Full text link
    We rederive dispersionless Hirota equations of the dispersionless Toda hierarchy from the method of kernel formula provided by Carroll and Kodama. We then apply the method to derive dispersionless Hirota equations of the extended dispersionless BKP(EdBKP) hierarchy proposed by Takasaki. Moreover, we verify associativity equations (WDVV equations) in the EdBKP hierarchy from dispersionless Hirota equations and give a realization of associative algebra with structure constants expressed in terms of residue formula.Comment: 30 pages, minor corrections, references adde

    Determining the strange and antistrange quark distributions of the nucleon

    Full text link
    The difference between the strange and antistrange quark distributions, \delta s(x)=s(x)-\sbar(x), and the combination of light quark sea and strange quark sea, \Delta (x)=\dbar(x)+\ubar(x)-s(x)-\sbar(x), are originated from non-perturbative processes, and can be calculated using non-perturbative models of the nucleon. We report calculations of δs(x)\delta s(x) and Δ(x)\Delta(x) using the meson cloud model. Combining our calculations of Δ(x)\Delta(x) with relatively well known light antiquark distributions obtained from global analysis of available experimental data, we estimate the total strange sea distributions of the nucleon.Comment: 4 pages, 3 figures; talk given by F.-G. at QNP0

    Magneto-Infrared Spectroscopic Study of Ultrathin Bi2_{2}Te3_{3} Single Crystals

    Get PDF
    Ultrathin Bi2_{2}Te3_{3} single crystals laid on Scotch tape are investigated by Fourier transform infrared spectroscopy at 44K and in a magnetic field up to 3535T. The magneto-transmittance spectra of the Bi2_{2}% Te3_{3}/tape composite are analyzed as a two-layer system and the optical conductivity of Bi2_{2}Te3_{3} at different magnetic fields are extracted. We find that magnetic field modifies the optical conductivity in the following ways: (1) Field-induced transfer of the optical weight from the lower frequency regime (<250<250cm1^{-1}) to the higher frequency regime (% >250cm1^{-1}) due to the redistribution of charge carriers across the Fermi surface. (2) Evolving of a Fano-resonance-like spectral feature from an anti-resonance to a resonance with increasing magnetic field. Such behavior can be attributed to the electron-phonon interactions between the % E_{u}^{1} optical phonon mode and the continuum of electronic transitions. (3) Cyclotron resonance resulting from the inter-valence band Landau level transitions, which can be described by the electrodynamics of massive Dirac holes

    A size-dependent nanoscale metal–insulator transition in random materials

    Get PDF
    Insulators and conductors with periodic structures can be readily distinguished, because they have different band structures, but the differences between insulators and conductors with random structures are more subtle. In 1958, Anderson provided a straightforward criterion for distinguishing between random insulators and conductors, based on the \u27diffusion\u27 distance ζ for electrons at 0 K (ref. 3). Insulators have a finite ζ, but conductors have an infinite ζ. Aided by a scaling argument, this concept can explain many phenomena in disordered electronic systems, such as the fact that the electrical resistivity of \u27dirty\u27 metals always increases as the temperature approaches 0 K (refs 4–6). Further verification for this model has come from experiments that measure how the properties of macroscopic samples vary with changes in temperature, pressure, impurity concentration and applied magnetic field, but, surprisingly, there have been no attempts to engineer a metal–insulator transition by making the sample size less than or more thanζ. Here, we report such an engineered transition using six different thin-film systems: two are glasses that contain dispersed platinum atoms, and four are single crystals of perovskite that contain minor conducting components. With a sample size comparable to ζ, transitions can be triggered by using an electric field or ultraviolet radiation to tune ζ through the injection and extraction of electrons. It would seem possible to take advantage of this nanometallicity in applications

    Implementation of Data Synchronization Mechanism in Virtual Desktop Infrastructure

    Get PDF
    There are more and more applications and services of Cloud technology. Whether the government, enterprises or organizations, even everyone may have requirements of constructing cloud systems. To build the virtual cloud infrastructure VMware vSphere which is the leader of the information industry on virtual platforms can let users use Virtual Desktop Infrastructure by their mobile device. This study integrated some management programs such as Activity Directory, VMware vCenter, View connection server, VMware vSphere and used the shared storage system of FreeNAS to provide the cloud virtual environment to users. With the simple interface to manage, it successfully provides administrators to build Virtual Desktop Infrastructure faster. Users can use their own device to control the virtual desktop in a mobile classroom by VMware Horizon View or browser. Users can also use a shared storage system to be the information exchange platform. If you can connect to the Internet, you can use your own virtual desktop anywhere. Finally, the complete construction implements the combination of several operating systems and improves their performance to save lots of hardware cost. It also meets the social focus of carbon reduction and environment protection to achieve sustainable use

    CFVS: Coarse-to-Fine Visual Servoing for 6-DoF Object-Agnostic Peg-In-Hole Assembly

    Full text link
    Robotic peg-in-hole assembly remains a challenging task due to its high accuracy demand. Previous work tends to simplify the problem by restricting the degree of freedom of the end-effector, or limiting the distance between the target and the initial pose position, which prevents them from being deployed in real-world manufacturing. Thus, we present a Coarse-to-Fine Visual Servoing (CFVS) peg-in-hole method, achieving 6-DoF end-effector motion control based on 3D visual feedback. CFVS can handle arbitrary tilt angles and large initial alignment errors through a fast pose estimation before refinement. Furthermore, by introducing a confidence map to ignore the irrelevant contour of objects, CFVS is robust against noise and can deal with various targets beyond training data. Extensive experiments show CFVS outperforms state-of-the-art methods and obtains 100%, 91%, and 82% average success rates in 3-DoF, 4-DoF, and 6-DoF peg-in-hole, respectively

    The quadratic spinor Lagrangian is equivalent to the teleparallel theory

    Get PDF
    The quadratic spinor Lagrangian is shown to be equivalent to the teleparallel / tetrad representation of Einstein's theory. An important consequence is that the energy-momentum density obtained from this quadratic spinor Lagrangian is essentially the same as the ``tensor'' proposed by Moller in 1961.Comment: 10 pages, RevTe
    corecore