36 research outputs found

    Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions

    Get PDF
    Vaginal microbiota dysbiosis, characterized by the loss of Lactobacillus dominance and increase of microbial diversity, is closely related to gynecological diseases; thus, intervention on microbiota composition is significant and promising in the treatment of gynecological diseases. Currently, antibiotics and/or probiotics are the mainstay of treatment, which show favorable therapeutic effects but also bring problems such as drug resistance and high recurrence. In this review, we discuss the role of vaginal microbiota dysbiosis in various gynecological infectious and non-infectious diseases, as well as the current and potential interventions

    Tripterygium glycosides sensitizes cisplatin chemotherapeutic potency by modulating gut microbiota in epithelial ovarian cancer

    Get PDF
    Epithelial ovarian cancer (EOC) is a fatal gynecological malignancy with limited therapeutic options. Previous research has demonstrated that Tripterygium glycosides (GTW) can enhance effectiveness of cisplatin (DDP) chemotherapy against EOC. However, the underlying mechanism of GTW alleviating EOC still remains unclear. In this article, an ID8 cell-derived xenograft mouse model was established to evaluate the anti-tumor efficacy of GTW combined with DDP. Consistent with previous findings, the results suggested that GTW combined with DDP can exhibit a stronger tumor suppressive effect than DDP alone. Additionally, GTW was found can further exert gastrointestinal protection against DDP by reducing pathological damage on colon tissue. Secondly, to verify whether gut microbiota play an instrumental role in GTW’s anticancer effect, we treated mice models with antibiotic to eliminate gut microbiota. And our experimental results indicated that all drug groups showed a weaker tumor suppressive effect and more severe gastrointestinal damage post antibiotic supplement. At genus level, the relative abundance of Lactobacillus was dramatically diminished by the antibiotic treatment, while combined treatment of GTW and DDP can significantly restore the level. Moreover, we performed Lactobacillus acidophilus transplantation and healthy mice fecal microbiota transplantation experiments to further investigate the link between the anticancer effect of GTW and gut microbiota. Our results suggested that both cisplatin-sensitizing and intestinal barrier-protecting effects of GTW can be recovered to a different extent. In conclusion, our results indicated that GTW is a promising chemosensitization and intestinal barrier repair drug for EOC, and the potential mechanism may corelate with the restoration of the compromised intestinal microbial balance

    Postbiotics in Human Health: A Narrative Review

    No full text
    In the 21st century, compressive health and functional foods are advocated by increasingly more people in order to eliminate sub-health conditions. Probiotics and postbiotics have gradually become the focus of scientific and nutrition communities. With the maturity and wide application of probiotics, the safety concerns and other disadvantages are non-negligible as we review here. As new-era products, postbiotics continue to have considerable potential as well as plentiful drawbacks to optimize. “Postbiotic” has been defined as a “preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”. Here, the evolution of the concept “postbiotics” is reviewed. The underlying mechanisms of postbiotic action are discussed. Current insight suggests that postbiotics exert efficacy through protective modulation, fortifying the epithelial barrier and modulation of immune responses. Finally, we provide an overview of the comparative advantages and the current application in the food industry at pharmaceutical and biomedical levels

    Potential Application of Living Microorganisms in the Detoxification of Heavy Metals

    No full text
    Heavy metal (HM) exposure remains a global occupational and environmental problem that creates a hazard to general health. Even low-level exposure to toxic metals contributes to the pathogenesis of various metabolic and immunological diseases, whereas, in this process, the gut microbiota serves as a major target and mediator of HM bioavailability and toxicity. Specifically, a picture is emerging from recent investigations identifying specific probiotic species to counteract the noxious effect of HM within the intestinal tract via a series of HM-resistant mechanisms. More encouragingly, aided by genetic engineering techniques, novel HM-bioremediation strategies using recombinant microorganisms have been fruitful and may provide access to promising biological medicines for HM poisoning. In this review, we summarized the pivotal mutualistic relationship between HM exposure and the gut microbiota, the probiotic-based protective strategies against HM-induced gut dysbiosis, with reference to recent advancements in developing engineered microorganisms for medically alleviating HM toxicity

    The Microbiota–Gut–Brain Axis in Depression: The Potential Pathophysiological Mechanisms and Microbiota Combined Antidepression Effect

    No full text
    Depression is a kind of worldwide mental illness with the highest morbidity and disability rate, which is often accompanied by gastrointestinal symptoms. Experiments have demonstrated that the disorder of the intestinal microbial system structure plays a crucial role in depression. The gut–brain axis manifests a potential linkage between the digestion system and the central nervous system (CNS). Nowadays, it has become an emerging trend to treat diseases by targeting intestinal microorganisms (e.g., probiotics) and combining the gut–brain axis mechanism. Combined with the research, we found that the incidence of depression is closely linked to the gut microbiota. Moreover, the transformation of the gut microbiota system structure is considered to have both positive and negative regulatory effects on the development of depression. This article reviewed the mechanism of bidirectional interaction in the gut–brain axis and existing symptom-relieving measures and antidepression treatments related to the gut microbiome

    TPL Inhibits the Invasion and Migration of Drug-Resistant Ovarian Cancer by Targeting the PI3K/AKT/NF-ÎşB-Signaling Pathway to Inhibit the Polarization of M2 TAMs

    Get PDF
    Chemoresistance is the primary reason for the poor prognosis of patients with ovarian cancer, and the search for a novel drug treatment or adjuvant chemotherapy drug is an urgent need. The tumor microenvironment plays key role in the incidence and development of tumors. As one of the most important components of the tumor microenvironment, M2 tumor-associated macrophages are closely related to tumor migration, invasion, immunosuppressive phenotype and drug resistance. Many studies have confirmed that triptolide (TPL), one of the principal components o
    corecore